SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "LAR1:lu ;lar1:(lnu);pers:(Gaillard Marie José 1953)"

Search: LAR1:lu > Linnaeus University > Gaillard Marie José 1953

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Deliang, 1961, et al. (author)
  • Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences
  • 2020
  • In: Tellus Series B-Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 72:1
  • Journal article (peer-reviewed)abstract
    • Climate change is not only about changes in means of climatic variables such as temperature, precipitation and wind, but also their extreme values which are of critical importance to human society and ecosystems. To inspire the Swedish climate research community and to promote assessments of international research on past and future changes in extreme weather events against the global climate change background, the Earth Science Class of the Royal Swedish Academy of Sciences organized a workshop entitled 'Extreme weather events in a warming world' in 2019. This article summarizes and synthesizes the key points from the presentations and discussions of the workshop on changes in floods, droughts, heat waves, as well as on tropical cyclones and extratropical storms. In addition to reviewing past achievements in these research fields and identifying research gaps with a focus on Sweden, future challenges and opportunities for the Swedish climate research community are highlighted.
  •  
2.
  • Dallmeyer, Anne, et al. (author)
  • The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models - a European perspective
  • 2023
  • In: Climate of the Past. - : Copernicus Publications. - 1814-9324 .- 1814-9332. ; 19:7, s. 1531-1557
  • Journal article (peer-reviewed)abstract
    • We compare Holocene tree cover changes in Europe derived from a transient Earth system model simulation (Max Planck Institute Earth System Model - MPI-ESM1.2, including the land surface and dynamic vegetation model JSBACH) with high-spatial-resolution time slice simulations performed in the dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) and pollen-based quantitative reconstructions of tree cover based on the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models, indicating much earlier anthropogenic deforestation than the prescribed land use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model-data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are - like most of the parameters in the vegetation models - static and calibrated to modern conditions. However, these parameter values may not be valid for past climate and vegetation states totally different from today's. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present-day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for paleo-simulations and complicate model-data comparisons with additional challenges. Moreover, our study suggests that land use is the main driver of forest decline in Europe during the mid-Holocene and late Holocene.
  •  
3.
  • Gaillard, Marie-José, 1953-, et al. (author)
  • Holocene land-cover reconstructions for studies on land cover-climate feedbacks
  • 2010
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 6, s. 483-499
  • Journal article (peer-reviewed)abstract
    • The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past land-cover from pollen data, (3) to present a new project (LANDCLIM: LAND cover – CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need for methods such as the REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past land-cover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The REVEALS model is demonstrated to provide better estimates of the regional vegetation/landcover changes than the traditional use of pollen percentages. This will achieve a robust assessment of land cover at regional- to continental-spatial scale throughout the Holocene. We present maps of REVEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs “grassland” and “agricultural land” at five time-windows from 6000 BP to recent time. The LANDCLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions.
  •  
4.
  •  
5.
  • Githumbi, Esther, et al. (author)
  • European pollen-based REVEALS land-cover reconstructions for the Holocene : Methodology, mapping and potentials
  • 2022
  • In: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:4, s. 1581-1619
  • Journal article (peer-reviewed)abstract
    • Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11g€¯700g€¯calg€¯yrg€¯BP). We describe how vegetation cover has been quantified from pollen records at a 11 spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites"(REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75° N, 25° W-50° E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022).
  •  
6.
  • Githumbi, Esther, et al. (author)
  • Pollen-Based Maps of Past Regional Vegetation Cover in Europe Over 12 Millennia-Evaluation and Potential
  • 2022
  • In: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 10
  • Journal article (peer-reviewed)abstract
    • Realistic and accurate reconstructions of past vegetation cover are necessary to study past environmental changes. This is important since the effects of human land-use changes (e.g. agriculture, deforestation and afforestation/reforestation) on biodiversity and climate are still under debate. Over the last decade, development, validation, and application of pollen-vegetation relationship models have made it possible to estimate plant abundance from fossil pollen data at both local and regional scales. In particular, the REVEALS model has been applied to produce datasets of past regional plant cover at 1 degrees spatial resolution at large subcontinental scales (North America, Europe, and China). However, such reconstructions are spatially discontinuous due to the discrete and irregular geographical distribution of sites (lakes and peat bogs) from which fossil pollen records have been produced. Therefore, spatial statistical models have been developed to create continuous maps of past plant cover using the REVEALS-based land cover estimates. In this paper, we present the first continuous time series of spatially complete maps of past plant cover across Europe during the Holocene (25 time windows covering the period from 11.7 k BP to present). We use a spatial-statistical model for compositional data to interpolate REVEALS-based estimates of three major land-cover types (LCTs), i.e., evergreen trees, summer-green trees and open land (grasses, herbs and low shrubs); producing spatially complete maps of the past coverage of these three LCTs. The spatial model uses four auxiliary data sets-latitude, longitude, elevation, and independent scenarios of past anthropogenic land-cover change based on per-capita land-use estimates ("standard" KK10 scenarios)-to improve model performance for areas with complex topography or few observations. We evaluate the resulting reconstructions for selected time windows using present day maps from the European Forest Institute, cross validate, and compare the results with earlier pollen-based spatially-continuous estimates for five selected time windows, i.e., 100 BP-present, 350-100 BP, 700-350 BP, 3.2-2.7 k BP, and 6.2-5.7 k BP. The evaluations suggest that the statistical model provides robust spatial reconstructions. From the maps we observe the broad change in the land-cover of Europe from dominance of naturally open land and persisting remnants of continental ice in the Early Holocene to a high fraction of forest cover in the Mid Holocene, and anthropogenic deforestation in the Late Holocene. The temporal and spatial continuity is relevant for land-use, land-cover, and climate research.
  •  
7.
  • Kaplan, Jed O., et al. (author)
  • Constraining the Deforestation History of Europe : Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions
  • 2017
  • In: Land. - : MDPI. - 2073-445X. ; 6:4
  • Journal article (peer-reviewed)abstract
    • Anthropogenic land cover change (ALCC) is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1) in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS). Considering that ALCC in Europe primarily resulted in deforestation, we comparemodeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.
  •  
8.
  • Lemdahl, Geoffrey, et al. (author)
  • Eemian and Early Weichselian environments in southern Sweden: a multi-proxy study of till-covered organic deposits from the Småland peneplain.
  • 2013
  • In: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 28:7, s. 705-719
  • Journal article (peer-reviewed)abstract
    • Based on their luminescence and infinite radiocarbon ages, organic deposits beneath till at two sites on the Småland peneplain, southern Sweden (Nybygget and Stora Gäddevik), are concluded to have formed before the Middle Weichselian. Applied palaeoecological methods include analyses of pollen, diatoms, charcoal fragments, macroscopic remains of vascular plants and mosses, and insect remains. Pollen-stratigraphical correlations with previously studied interglacial/interstadial sites in southern Sweden, Denmark and northern Germany suggest that the peat at Nybygget dates from the Brørup interstadial or the final stage of the Eemian interglacial, whereas the lake sediments at Stora Gäddevik probably were emplaced during the middle Eemian. We conclude that the peat was formed in a wetland characterized by both wood swamp and open mire vegetation, and surrounded by semi-open woodlands dominated by pine, birch and hazel. The middle Eemian sequence at the Stora Gäddevik site provides evidence of a moderately nutrient-rich to nutrient-rich lake environment with relatively diverse aquatic vegetation. Regional vegetation, as reconstructed using the REVEALS model, was spruce woodland mixed with pine, alder and birch, but also included more open environments with hazel, oak, grasslands and sedge-dominated wetlands. Water shield (Brasenia schreberi), now extinct in Europe, was identified in the Eemian lake deposits, from both pollen and macroscopic remains.
  •  
9.
  • Marquer, Laurent, et al. (author)
  • Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter
  • 2014
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 90, s. 199-216
  • Journal article (peer-reviewed)abstract
    • We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human distribution on Holocene regional, vegetation, feature that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past. (C) Elsevier Ltd.All tights reserved.
  •  
10.
  • Marquer, Laurent, et al. (author)
  • Quantifying the effects of land use and climate on Holocene vegetation in Europe
  • 2017
  • In: Quaternary Science Reviews. - : Pergamon Press. - 0277-3791 .- 1873-457X. ; 171, s. 20-37
  • Journal article (peer-reviewed)abstract
    • Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17
Type of publication
journal article (17)
Type of content
peer-reviewed (16)
other academic/artistic (1)
Author/Editor
Poska, Anneli (10)
Nielsen, Anne Birgit ... (7)
Mazier, Florence (7)
Sugita, Shinya (7)
Trondman, Anna-Kari, ... (7)
show more...
Marquer, Laurent (6)
Birks, H. John B. (5)
Fyfe, Ralph (5)
Lindström, Johan (4)
Githumbi, Esther (4)
Giesecke, Thomas (3)
Smith, Benjamin (3)
Zhang, Qiong (3)
Bjune, Anne E. (3)
Herzschuh, Ulrike (3)
Sugita, S (3)
van der Knaap, W.O. (3)
Edwards, Kevin J. (3)
Woodbridge, Jessie (3)
Fyfe, R. (3)
Trondman, Anna-Kari (3)
Nielsen, A.B. (3)
Kangur, M (3)
Leydet, M (3)
Alenius, Teija (2)
Kaplan, J. O. (2)
Birks, H.J.B. (2)
Broström, Anna (2)
Kjellström, Erik (2)
Seppa, H (2)
Olofsson, Jörgen (2)
Seppa, Heikki (2)
Kaplan, Jed O. (2)
Giesecke, T. (2)
Mazier, F. (2)
Odgaard, B (2)
Kokfelt, Ulla (2)
Pirzamanbein, Behnaz (2)
Kjellström, Erik, 19 ... (2)
Dodson, John (2)
Kuneš, P (2)
Strandberg, Gustav, ... (2)
Fyfe, Ralph M. (2)
Alenius, T (2)
Balakauskas, L (2)
Hjelle, K (2)
Kalnina, L (2)
Latalowa, M (2)
Lechterbeck, J (2)
show less...
University
Lund University (17)
Stockholm University (4)
Swedish University of Agricultural Sciences (4)
Uppsala University (2)
University of Gothenburg (1)
show more...
Umeå University (1)
Örebro University (1)
Södertörn University (1)
show less...
Language
English (17)
Research subject (UKÄ/SCB)
Natural sciences (17)
Agricultural Sciences (3)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view