SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1352 2310 ;pers:(Querol X.)"

Search: L773:1352 2310 > Querol X.

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alves, C. A., et al. (author)
  • Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres
  • 2020
  • In: Atmospheric Environment. - : Elsevier Ltd. - 1352-2310 .- 1873-2844. ; 224
  • Journal article (peer-reviewed)abstract
    • A road simulator was used to generate wear particles from the interaction between two tyre brands and a composite pavement. Particle size distributions were monitored using a scanning mobility particle sizer and an aerosol particle sizer. Continuous measurements of particle mass concentrations were also made. Collection of inhalable particles (PM10) was conducted using a high-volume sampler equipped with quartz filters, which were then analysed for organic and elemental carbon, organic constituents and elemental composition. Tyre fragments chopped into tiny chips were also subjected to detailed organic and elemental speciation. The number concentration was dominated by particles <0.5 μm, whereas most of the mass was found in particles >0.5 μm. The emission factor from wear between pavements and tyres was of the order of 2 mg km−1 veh−1. Organic carbon represented about 10% of the PM10 mass, encompassing multiple aliphatic compounds (n-alkanes, alkenes, hopanes, and steranes), PAHs, thiazols, n-alkanols, polyols, some fragrant compounds, sugars, triterpenoids, sterols, phenolic constituents, phthalate plasticisers and several types of acids, among others. The relationship between airborne particulate organic constituents and organic matter in tyre debris is discussed. The detection of compounds that have been extensively used as biomass burning tracers (e.g. retene, dehydroabietic acid and levoglucosan) in both the shredded tiny tyre chips and the wear particles from the interaction between tyres and pavement puts into question their uniqueness as markers of wood combustion. Trace and major elements accounted for about 5% of the mass of the tyre fragments but represented 15–18% of the PM10 from wear, denoting the contribution of mineral elements from the pavement. Sulphur and zinc were abundant constituents in all samples.
  •  
2.
  •  
3.
  • Putaud, J. -P, et al. (author)
  • A European aerosol phenomenology-3 : Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe
  • 2010
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 44:10, s. 1308-1320
  • Journal article (peer-reviewed)abstract
    • This paper synthesizes data on aerosol (particulate matter, PM) physical and chemical characteristics, which were obtained over the past decade in aerosol research and monitoring activities at more than 60 natural background, rural, near-city, urban, and kerbside sites across Europe. The data include simultaneously measured PM10 and/or PM2.5 mass on the one hand, and aerosol particle number concentrations or PM chemistry on the other hand. The aerosol data presented in our previous works (Van Dingenen et al., 2004; Putaud et al., 2004) were updated and merged to those collected in the framework of the EU supported European Cooperation in the field of Scientific and Technical action COST633 (Particulate matter: Properties related to health effects). A number of conclusions from our previous studies were confirmed. There is no single ratio between PM2.5 and PM10 mass concentrations valid for all sites, although fairly constant ratios ranging from 0.5 to 0.9 are observed at most individual sites. There is no general correlation between PM mass and particle number concentrations, although particle number concentrations increase with PM2.5 levels at most sites. The main constituents of both PM10 and PM2.5 are generally organic matter, sulfate and nitrate. Mineral dust can also be a major constituent of PM10 at kerbside sites and in Southern Europe. There is a clear decreasing gradient in SO42- and NO3- contribution to PM10 when moving from rural to urban to kerbside sites. In contrast, the total carbon/PM10 ratio increases from rural to kerbside sites. Some new conclusions were also drawn from this work: the ratio between ultrafine particle and total particle number concentration decreases with PM2.5 concentration at all sites but one, and significant gradients in PM chemistry are observed when moving from Northwestern, to Southern to Central Europe. Compiling an even larger number of data sets would have further increased the significance of our conclusions, but collecting all the aerosol data sets obtained also through research projects remains a tedious task.
  •  
4.
  • Viana, M., et al. (author)
  • Source apportionment of ambient PM2.5 at five Spanish centres of the European Community Respiratory Health Survey (ECRHS II)
  • 2007
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 41:7, s. 1395-1406
  • Journal article (peer-reviewed)abstract
    • Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4-5 factors were identified at each site, three of them being common to all sites (interpreted as traffic. mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39-53% of PM2.5, 5.1-12.0 mu g m(-3)), while regional-scale secondary aerosols accounted for 14-34% of PM2.5 (2.6-4.5 mu g m(-3)), mineral matter for 13-31% (2.4-4.6 mu g m(-3)) and sea-salt made up 3-7% of the PM2.5 mass (0.4-1.3 mu g m(-3)). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4-11 mu g m(-3) to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2-8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5-2).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view