SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naylor Andrew Stuart 1977 ) srt2:(2004)"

Sökning: WFRF:(Naylor Andrew Stuart 1977 ) > (2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hägg Samuelsson, Ulrika, 1973, et al. (författare)
  • Voluntary physical exercise-induced vascular effects in spontaneously hypertensive rats
  • 2004
  • Ingår i: Clin Sci (Lond). - 0143-5221. ; 107:6, s. 571-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Forced training has been shown to have beneficial vascular effects in various animal exercise models. In the present study, we explored possible physiological and molecular effects of voluntary physical exercise on various vascular beds. SHR (spontaneously hypertensive rats) performed voluntary exercise for 5 weeks in a computerized wheel cage facility. Ex vivo myograph studies revealed an increased sensitivity of the ACh (acetylcholine)-mediated vasodilation in resistance arteries of the exercised animals (ED50=15.0+/-3.5 nmol/l) compared with the controls (ED50=37.0+/-8.8 nmol/l; P=0.05). The exercise/control difference was abolished after scavenging reactive oxygen radicals. In conduit arteries, ACh induced a similar vasodilatory response in both groups. The in vivo aortic wall stiffness, assessed by means of Doppler tissue echography, was significantly lower in the exercising animals than in controls. This was demonstrated by significantly increased peak systolic aortic wall velocity (P=0.03) and the velocity time integral (P=0.01) in exercising animals compared with controls. The relative gene expression of eNOS (endothelial nitric oxide synthase) was similar in both groups of animals, whereas Cu/ZnSOD (copper/zinc superoxide dismutase) gene expression was significantly increased (+111%; P=0.0007) in the exercising animal compared with controls. In conclusion, voluntary physical exercise differentially improves vascular function in various vascular beds. Increased vascular compliance and antioxidative capacity may contribute to the atheroprotective effects associated with physical exercise in conduit vessels.
  •  
2.
  • Lindholm, Catharina, 1967, et al. (författare)
  • Mucosal vaccination increases endothelial expression of mucosal addressin cell adhesion molecule 1 in the human gastrointestinal tract.
  • 2004
  • Ingår i: Infection and immunity. - 0019-9567. ; 72:2, s. 1004-9
  • Forskningsöversikt (refereegranskat)abstract
    • Homing of leukocytes to various tissues is dependent on the interaction between homing receptors on leukocytes and their ligands, addressins, on endothelial cells. Mucosal immunization results in homing of antigen-specific lymphocytes back to the mucosa where they first encountered the antigen. However, it is unknown whether this homing of antigen-specific cells is mediated by an altered endothelial addressin expression after vaccination. Using different immunization routes with an oral cholera vaccine, we show that the endothelial expression of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) is increased in the gastric and upper small intestinal mucosae after immunization through various local routes in the upper gastrointestinal tract. In contrast, rectal immunization did not influence the levels of MAdCAM-1 in the gastric or duodenal mucosa. Furthermore, we show that MAdCAM-1 can be induced on human endothelial cells by tumor necrosis factor alpha (TNF-alpha) and gamma interferon. The vaccine component cholera toxin B subunit (CTB) increased MAdCAM-1 expression on endothelial cells in cultured human gastric explants, an effect that seemed to be mediated by TNF-alpha. In conclusion, MAdCAM-1 expression is increased in the upper gastrointestinal tract after local immunizations with a vaccine containing CTB. This strongly suggests the involvement of MAdCAM-1 in the preferential homing of mucosal lymphocytes to their original site of activation.
  •  
3.
  • Persson, Anders I., 1973, et al. (författare)
  • Differential regulation of hippocampal progenitor proliferation by opioid receptor antagonists in running and non-running spontaneously hypertensive rats.
  • 2004
  • Ingår i: The European journal of neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 19:7, s. 1847-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Voluntary running in mice and forced treadmill running in rats have been shown to increase the amount of proliferating cells in the hippocampus. Little is known as yet about the mechanisms involved in these processes. It is well known that the endogenous opioid system is affected during running and other forms of physical exercise. In this study, we evaluated the involvement of the endogenous opioids in the regulation of hippocampal proliferation in non-running and voluntary running rats. Nine days of wheel running was compared with non-running in spontaneously hypertensive rats (SHR), a rat strain known to run voluntarily. On the last 2 days of the experimental period all rats received two daily injections of the opioid receptor antagonists naltrexone or naltrindole together with injections of bromodeoxyuridine to label dividing cells. Brain sections from the running rats showed approximately a five-fold increase in newly generated cells in the hippocampus, and this increase was partly reduced by naltrexone but not by naltrindole. By contrast, both naltrexone and naltrindole increased hippocampal proliferation in non-running rats. In non-running rats the administration of naltrexone decreased corticosterone levels and adrenal gland weights, whereas no significant effects on these parameters could be detected for naltrindole. However, adrenal gland weights were increased in naltrexone- but not in naltrindole-administered running rats. In addition, in voluntary running rats there was a three-fold increase in the hippocampal levels of Met-enkephalin-Arg-Phe compared with non-runners, indicating an increase in opioid activity in the hippocampus during running. These data suggest an involvement of endogenous opioids in the regulation of hippocampal proliferation in non-running rats, probably through hypothalamic-pituitary-adrenal axis modulation. During voluntary running in SHR naltrexone altered hippocampal proliferation via as yet unknown mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy