SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laakso Markku) "

Sökning: WFRF:(Laakso Markku)

  • Resultat 21-30 av 121
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Cai, Mengyin, et al. (författare)
  • Role of osteopontin and its regulation in pancreatic islet
  • 2018
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 0006-291X. ; 495:1, s. 1426-1431
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteopontin (OPN) is involved in various physiological processes and also implicated in multiple pathological states. It has been suggested that OPN may have a role in type 2 diabetes (T2D) by protecting pancreatic islets and interaction with incretins. However, the regulation and function of OPN in islets, especially in humans, remains largely unexplored. In this study, we performed our investigations on both diabetic mouse model SUR1-E1506K+/+ and islets from human donors. We demonstrated that OPN protein, secretion and gene expression was elevated in the diabetic SUR1-E1506K+/+ islets. We also showed that high glucose and incretins simultaneously stimulated islet OPN secretion. In islets from human cadaver donors, OPN gene expression was elevated in diabetic islets, and externally added OPN significantly increased glucose-stimulated insulin secretion (GSIS) from diabetic but not normal glycemic donors. The increase in GSIS by OPN in diabetic human islets was Ca2+ dependent, which was abolished by Ca2+-channel inhibitor isradipine. Furthermore, we also confirmed that OPN promoted cell metabolic activity when challenged by high glucose. These observations provided evidence on the protective role of OPN in pancreatic islets under diabetic condition, and may point to novel therapeutic targets for islet protection in T2D.
  •  
22.
  • Cederberg, Hanna, et al. (författare)
  • Family history of type 2 diabetes increases the risk of both obesity and its complications: is type 2 diabetes a disease of inappropriate lipid storage?
  • 2015
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820. ; 277:5, s. 540-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: The aim of this study was to characterize diabetes risk in relation to amount and distribution of body fat (environmental factors) and genetic risk defined as having first-degree (FH1) or second-degree relatives with diabetes. Design: We analysed the METSIM population of 10197 middle-aged, randomly selected men. At baseline, information about family history of diabetes was registered and all individuals underwent extensive phenotyping. A follow-up study was conducted after 6years. The metabolic consequences of increased visceral versus subcutaneous fat were characterized in a separate cohort of 158 healthy men (the Kuopio Cohort of the EUGENE2 study). Results: At baseline, individuals with a family history of diabetes (FH+) had approximately a twofold increase in the prevalence of type 2 diabetes compared with individuals without a family history of the disease (FH-) (18.0% vs. 9.9%; P=1.3x 10(-31)). FH1 individuals were more commonly overweight and obese compared with FH- (69.2% vs. 64.8%; P=1.3x10(-4)) and, for a given body mass index, showed an increased risk profile for both type 2 diabetes and cardiovascular disease as well as a greater susceptibility to the negative consequences of increased body fat also when nonobese. Subgroup analyses indicated that the metabolic consequences were due primarily to increased ectopic/visceral fat rather than subcutaneous fat. The increased risk profile in FH+ individuals was not altered by adjusting for 43 major diabetes risk genes. Conclusions: Family history of type 2 diabetes (particularly FH1) is associated with both increased risk of becoming overweight/obese and with a greater susceptibility to the negative consequences of increasing body fat, probably as a consequence of an increased propensity to accumulate ectopic (nonsubcutaneous) fat.
  •  
23.
  • Chen, Wei-Min, et al. (författare)
  • Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels.
  • 2008
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; Jun 2, s. 2620-2628
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from Finland and Sardinia. We found a significant association between the SNP rs563694 and fasting glucose concentrations (P = 3.5 x 10(-7)). This association was further investigated in an additional 18,436 nondiabetic individuals of mixed European descent from 7 different studies. The combined P value for association in these follow-up samples was 6.9 x 10(-26), and combining results from all studies resulted in an overall P value for association of 6.4 x 10(-33). Across these studies, fasting glucose concentrations increased 0.01-0.16 mM with each copy of the major allele, accounting for approximately 1% of the total variation in fasting glucose. The rs563694 SNP is located between the genes glucose-6-phosphatase catalytic subunit 2 (G6PC2) and ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11). Our results in combination with data reported in the literature suggest that G6PC2, a glucose-6-phosphatase almost exclusively expressed in pancreatic islet cells, may underlie variation in fasting glucose, though it is possible that ABCB11, which is expressed primarily in liver, may also contribute to such variation.
  •  
24.
  • De Marinis, Yang, et al. (författare)
  • Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney.
  • 2016
  • Ingår i: Kidney International. - : Elsevier BV. - 1523-1755 .- 0085-2538. ; 89:2, s. 342-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease is the leading cause of end-stage renal disease. Genetic factors have been suggested to contribute to its susceptibility. However, results from genetic studies are disappointing possibly because the role of glucose in diabetic kidney disease predisposed by epigenetic mechanisms has not been taken into account. Since thioredoxin-interacting protein (TXNIP) has been shown to play an important role in the pathogenesis of diabetic kidney disease, we tested whether glucose could induce expression of TXNIP in the kidney by epigenetic mechanisms. In kidneys from diabetic Sur1-E1506K(+/+) mice, hyperglycemia-induced Txnip expression was associated with stimulation of activating histone marks H3K9ac, H3K4me3, and H3K4me1, as well as decrease in the repressive histone mark H3K27me3 at the promoter region of the gene. Glucose also coordinated changes in histone marks and TXNIP gene expression in mouse SV40 MES13 mesangial cells and the normal human mesangial cell line NHMC. The involvement of histone acetylation in glucose-stimulated TXNIP expression was confirmed by reversing or enhancing acetylation using the histone acetyltransferase p300 inhibitor C646 or the histone deacetylase inhibitor trichostatin A. Thus, glucose is a potent inducer of histone modifications, which could drive expression of proinflammatory genes and thereby predispose to diabetic kidney disease.
  •  
25.
  • de Vries, Paul S., et al. (författare)
  • Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions
  • 2019
  • Ingår i: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 188:6, s. 1033-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
  •  
26.
  • Deshmukh, Harshal A., et al. (författare)
  • Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:1, s. 80-90
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-insulin secretion relationship and is a key predictor of deteriorating glucose tolerance and development of type 2 diabetes. However, there are no large-scale studies looking at the genetic determinants of beta-cell glucose sensitivity. OBJECTIVE: To understand the genetic determinants of pancreatic beta-cell glucose sensitivity using genome-wide meta-analysis and candidate gene studies. DESIGN: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts (n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose tolerance tests, and its associations between known glycemia-related single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were estimated using linear regression models. RESULTS: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 × 10-9) and rs9368219 in the CDKAL1 (P value = 3.15 × 10-9) showing the strongest association with beta-cell glucose sensitivity. These loci surpassed genome-wide significance when the GWAS meta-analysis was repeated after exclusion of the diabetic subjects. After correction for multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were also associated with beta-cell glucose sensitivity. CONCLUSION: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key determinants of pancreatic beta-cell glucose sensitivity.
  •  
27.
  • Dimas, Antigone S, et al. (författare)
  • Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:6, s. 2158-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin processing, insulin secretion and insulin sensitivity. We included data from up to 58,614 non-diabetic subjects with basal measures, and 17,327 with dynamic measures. We employed additive genetic models with adjustment for sex, age and BMI, followed by fixed-effects inverse variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (including TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without detectable change in fasting glucose. The final group contained twenty risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
  •  
28.
  • Do, Ron, et al. (författare)
  • Common variants associated with plasma triglycerides and risk for coronary artery disease
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:11, s. 1345-
  • Tidskriftsartikel (refereegranskat)abstract
    • Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 x 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
  •  
29.
  • Erzurumluoglu, A. Mesut, et al. (författare)
  • Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
  • 2020
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:10, s. 2392-2409
  • Tidskriftsartikel (refereegranskat)abstract
    • Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
  •  
30.
  • Evangelou, Evangelos, et al. (författare)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 121
Typ av publikation
tidskriftsartikel (118)
annan publikation (1)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (119)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Laakso, Markku (113)
Boehnke, Michael (65)
Kuusisto, Johanna (64)
Wareham, Nicholas J. (57)
Groop, Leif (55)
McCarthy, Mark I (54)
visa fler...
Mohlke, Karen L (53)
Langenberg, Claudia (50)
Tuomilehto, Jaakko (49)
Jackson, Anne U. (47)
Hansen, Torben (46)
Pedersen, Oluf (44)
Lind, Lars (43)
Loos, Ruth J F (43)
Salomaa, Veikko (42)
Walker, Mark (39)
Collins, Francis S. (39)
Luan, Jian'an (38)
Barroso, Ines (36)
Stancáková, Alena (35)
Mahajan, Anubha (35)
Frayling, Timothy M (35)
Gieger, Christian (34)
Palmer, Colin N. A. (34)
Grarup, Niels (33)
Grallert, Harald (33)
Deloukas, Panos (32)
Franks, Paul W. (32)
van Duijn, Cornelia ... (31)
Ingelsson, Erik (31)
Stefansson, Kari (31)
Hayward, Caroline (31)
Gudnason, Vilmundur (31)
Bonnycastle, Lori L. (31)
Scott, Robert A (30)
Thorleifsson, Gudmar (30)
Tuomi, Tiinamaija (29)
Thorsteinsdottir, Un ... (29)
Rotter, Jerome I. (29)
Froguel, Philippe (29)
Morris, Andrew D (29)
Lyssenko, Valeriya (28)
Perola, Markus (28)
Rudan, Igor (28)
Hattersley, Andrew T (28)
Metspalu, Andres (28)
Uitterlinden, André ... (28)
Boerwinkle, Eric (28)
Prokopenko, Inga (28)
Esko, Tõnu (28)
visa färre...
Lärosäte
Lunds universitet (85)
Uppsala universitet (61)
Umeå universitet (40)
Karolinska Institutet (38)
Göteborgs universitet (18)
Stockholms universitet (7)
visa fler...
Kungliga Tekniska Högskolan (5)
Örebro universitet (5)
Högskolan Dalarna (5)
Högskolan i Halmstad (1)
Linköpings universitet (1)
Handelshögskolan i Stockholm (1)
visa färre...
Språk
Engelska (120)
Finska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (108)
Naturvetenskap (16)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy