SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1352 2310 ;pers:(Westerholm Roger)"

Search: L773:1352 2310 > Westerholm Roger

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahmed, Trifa M., et al. (author)
  • Native and oxygenated polycyclic aromatic hydrocarbons in ambient air particulate matter from the city of Sulaimaniyah in Iraq
  • 2015
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 116, s. 44-50
  • Journal article (peer-reviewed)abstract
    • The concentrations of 43 polycyclic aromatic hydrocarbons (PAHs) and 4 oxygenated PAHs (OPAHs) are reported for the first time in particulate matter (PM10) sampled in the air of the city of Sulaimaniyah in Iraq. The total PAH concentration at the different sampling sites varied between 9.3 and 114 ng/m(3). The corresponding values of the human carcinogen benzotalpyrene were between 0.3 and 6.9 ng/m(3), with most samples exceeding the EU annual target value of 1 ng/m(3). The highly carcinogenic dibenzopyrene isomers dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene and dibenzo[a,h]pyrene constituted 0.1-0.4% of the total PAH concentration. However, when scaling for relative cancer potencies using toxic equivalency factors, a benzo[a]pyrene equivalent concentration of dibenzo[a,l]pyrene equal to that of benzo[a]pyrene was obtained, indicating that the contribution of dibenzo[a,l]pyrene to the carcinogenicity of the PAHs could be similar to that of benzo[a]pyrene. A high correlation between the determined concentrations of the dibenzopyrene isomers and benzo[a]pyrene was found, which supported the use of benzo[a]pyrene as an indicator for the carcinogenicity of PAHs in ambient air. The total concentrations of the four OPAHs, 9,10-anthraquinone, 4H-cyclopenta[def]phenanthren-4-one, benzanthrone, and 7,12-benz[a]anthraquinone, varied between 0.6 and 8.1 ng/m(3), with 9,10-anthraquinone being the most abundant OPAH in all of the samples.
  •  
2.
  • Avagyan, Rozanna, et al. (author)
  • Particulate hydroxy-PAH emissions from a residential wood log stove using different fuels and burning conditions
  • 2016
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 140, s. 1-9
  • Journal article (peer-reviewed)abstract
    • Hydroxylated polycyclic aromatic hydrocarbons are oxidation products of polycyclic aromatic hydrocarbons, but have not been studied as extensively as polycyclic aromatic hydrocarbons. Several studies have however shown that hydroxylated polycyclic aromatic hydrocarbons have toxic and carcinogenic properties. They have been detected in air samples in semi urban areas and combustion is assumed to be the primary source of those compounds. To better understand the formation and occurrence of particulate hydroxylated polycyclic aromatic hydrocarbons from residential wood log stove combustion, 9 hydroxylated polycyclic aromatic hydrocarbons and 2 hydroxy biphenyls were quantified in particles generated from four different types of wood logs (birch, spruce, pine, aspen) and two different combustion conditions (nominal and high burn rate). A previously developed method utilizing liquid chromatography photo ionization tandem mass spectrometry and pressurized liquid extraction was used. Polycyclic aromatic hydrocarbons were analyzed along with hydroxylated polycyclic aromatic hydrocarbons. The hydroxylated polycyclic aromatic hydrocarbon emissions varied significantly across different wood types and burning conditions; the highest emissions for nominal burn rate were from spruce and for high burn rate from pine burning. Emissions from nominal burn rate corresponded on average to 15% of the emissions from high burn rate, with average emissions of 218 mu g/MJ(fuel) and 32.5 mu g/MJ(fuel) for high burn rate and nominal burn rate, respectively. Emissions of the measured hydroxylated polycyclic aromatic hydrocarbons corresponded on average to 28% of polycyclic aromatic hydrocarbons emissions. This study shows that wood combustion is a large emission source of hydroxylated polycyclic aromatic hydrocarbons and that not only combustion conditions, but also wood type influences the emissions of hydroxylated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons. There are few studies that have determined hydroxylated polycyclic aromatic hydrocarbons in emissions from wood combustion, and it is therefore necessary to further investigate the formation, occurrence and distribution of these compounds as they are present in significant amounts in wood smoke particles.
  •  
3.
  • Bergvall, Christoffer, 1979-, et al. (author)
  • Determination of highly carcinogenic dibenzopyrene isomers in particulate emissions from two diesel- and two gasoline-fuelled light-duty vehicles
  • 2009
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 43:25, s. 3883-3890
  • Journal article (peer-reviewed)abstract
    • Emission factors of particulate-bound Polycyclic Aromatic Hydrocarbons (PAHs) including benzo(a)pyrene and, for the first time, the highly carcinogenic dibenzo(a,l)pyrene, dibenzo(a,e)pyrene, dibenzo(a,i)pyrene and dibenzo(a,h)pyrene have been determined in exhausts from two diesel- (DFVs) and two gasoline-fuelled light-duty vehicles (GFVs) operated in the Urban (AU), Rural Road (AR) and Motorway (AM) transient ARTEMIS driving cycles. The obtained results showed the DFVs to emit higher amounts of PAHs than the GFVs per km driving distance at low average speed in the AU driving cycle, while the GFVs emitted higher amounts of PAHs than the DFVs per km driving distance at higher average speeds in the AR and AM driving cycles. Furthermore, the study showed an increase in PAH emissions per km driving distance with increasing average speed for the GFVs with the opposite trend found for the DFVs. The GFVs generated particulate matter with higher PAH content than the DFVs in all three driving cycles tested with the highest concentrations obtained in the AR driving cycle. Dibenzo(a,l)pyrene was found to be a major contributor to the potential carcinogenicity accounting for 58–67% and 25–31% of the sum added potential carcinogenicity of the measured PAHs in the emitted particulate matter from the DFVs and GFVs, respectively. Corresponding values for benzo(a)pyrene were 16–25% and 11–40% for the DFVs and GFVs, respectively. The DFVs displayed higher sum added potential carcinogenicity of the measured PAHs than the GFVs in the AU driving cycle with the opposite trend found in the AR and AM driving cycles. The findings of this study show the importance of including the dibenzopyrenes in vehicle exhaust chemical characterizations to avoid potential underestimation of the carcinogenic activity of the emissions. The lower emissions and the lower sum added potential carcinogenicity of the measured PAHs found in this study for the GFVs compared to the DFVs in the AU driving cycle indicate the GFVs to be preferred in dense urban areas with traffic moving at low average speeds with multiple start and stops. However, the obtained results suggest the opposite to be true at higher average speeds with driving at rural roads and motorways. Further studies are, however, needed to establish if the observed differences between GFVs and DFVs are generally valid as well as to study the effects on variations in vehicle/engine type, ambient temperature, fuel and driving conditions on the emission factors.
  •  
4.
  •  
5.
  • Masala, Silvia, et al. (author)
  • Determination of semi-volatile and particle-associated polycyclic aromatic hydrocarbons in Stockholm air with emphasis on the highly carcinogenic dibenzopyrene isomers
  • 2016
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 140, s. 370-380
  • Journal article (peer-reviewed)abstract
    • The concentrations of polycyclic aromatic hydrocarbons (PAHs) have been determined in the gaseous phase and in various particulate matter (PM) size fractions at different locations in and outside of Stockholm, Sweden, representative of street level, urban and rural background. The focus has been on the seldom determined but highly carcinogenic dibenzopyrene isomers (DBPs) dibenzo[a,I]pyrene, dibenzo [a,e]pyrene, dibenzo[a,i]pyrene and dibenzo[a,h]pyrene. PAHs with 3 rings were found to be mainly associated with the vapor phase (>90%) whereas PAHs with 5-6 rings were mostly associated with particulate matter (>92%) and the 4-ringed PAHs partitioned between the two phases. PAH abundance was determined to be in the order street level > urban background > rural background with the PM10 street level 2010 mean of benzo[a]pyrene (B[a]P) reaching 0.24 ng/m(3), well below the EU annual limit value of 1 ng/m(3). In addition, higher PAH concentrations were found in the sub-micron particle fraction (PM1) as compared to the super -micron fraction (PM1-10) with the abundance in PM1 varying between 57 and 86% of the total PAHs. The B[a]P equivalent concentrations derived for DB[a,l]P and total DBPs exceeded 1-2 and 2-4 times, respectively, that of B[a]P at the four sampling sites; therefore underestimation of the cancer risk posed by PAHs in air could be made if the DBPs were not considered in risk assessment using the toxic equivalency approach, whilst the high correlation (p < 0.001) found in the relative concentrations supports the use of B[a]P as a marker substance for assessment of the carcinogenic risk associated to PAHs. However, the big difference in concentration ratios of B[a]P and the DBPs between the present study and some literature data calls for further research to evaluate the temporal and spatial invariance of the B[a]P/DBP ratios.
  •  
6.
  • Nordin, Erik, et al. (author)
  • Influence of ozone initiated processing on the toxicity of aerosol particles from small scale wood combustion
  • 2015
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 102, s. 282-289
  • Journal article (peer-reviewed)abstract
    • Black carbon containing emissions from biomass combustion are being transformed in the atmosphere upon processing induced by tropospheric ozone and UV. The knowledge today is very limited on how atmospheric processing affects the toxicological properties of the emissions. The aim of this study was to investigate the influence of ozone initiated (dark) atmospheric processing on the physicochemical and toxicological properties of particulate emissions from wood combustion. Emissions from a conventional wood stove operated at two combustion conditions (nominal and hot air starved) were diluted and transferred to a chamber. Particulate matter (PM) was collected before and after ozone addition to the chamber using an impactor. Detailed chemical and physical characterization was performed on chamber air and collected PM. The collected PM was investigated toxicologically in vitro with a mouse macrophage model, endpoints included: cell cycle analysis, viability, inflammation and genotoxicity. The results suggest that changes in the organic fraction, including polycyclic aromatic hydrocarbons (PAHs) are the main driver for differences in obtained toxicological effects. Fresh hot air starved emissions containing a higher organic and PAH mass-fraction affected cell viability stronger than fresh emissions from nominal combustion. The PAH mass fractions decreased upon aging due to chemical degradation. Dark aging increased genotoxicity, reduced viability and reduced release of inflammatory markers. These differences were statistically significant for single doses and typically less pronounced. We hypothesize that the alterations in toxicity upon simulated dark aging in the atmosphere may be caused by reaction products that form when PAHs and other organic compounds react with ozone and nitrate radicals. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view