SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gali Adam) "

Sökning: WFRF:(Gali Adam)

  • Resultat 41-50 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Ivády, Viktor, et al. (författare)
  • Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study
  • 2021
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 103:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground-state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables for a broad variety of environmental couplings to have an effect on the NV centers luminescence. Previous works have addressed several aspects of the GSLAC photoluminescence, however, a comprehensive analysis of the GSLAC signature of NV ensembles in different spin environments at various external fields is missing. Here we employ a combination of experiments and recently developed numerical methods to investigate in detail the effects of transverse electric and magnetic fields, strain, P1 centers, NV centers, and the C-13 nuclear spins on the GSLAC photoluminescence. Our comprehensive analysis provides a solid ground for advancing various microwave-free applications at the GSLAC, including but not limited to magnetometry, spectroscopy, dynamic nuclear polarization (DNP), and nuclear magnetic resonance (NMR) detection. We demonstrate that not only the most abundant (NV)-N-14 center but the (NV)-N-15 can also be utilized in such applications.
  •  
42.
  • Ivády, Viktor, et al. (författare)
  • Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study
  • 2014
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 90:23, s. 235205-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen-vacancy centers in diamond (NV) attract great attention because they serve as a tool in many important applications. The NV center has a polarizable spin S = 1 ground state and its spin state can be addressed by optically detected magnetic resonance (ODMR) techniques. The m(S) = 0 and m(S) = +/- 1 spin levels of the ground state are separated by about 2.88 GHz in the absence of an external magnetic field or any other perturbations. This zero-field splitting (ZFS) can be probed by ODMR. As this splitting changes as a function of pressure and temperature, the NV center might be employed as a sensor operating at the nanoscale. Therefore, it is of high importance to understand the intricate details of the pressure and temperature dependence of this splitting. Here we present an ab initio theory of the ZFS of the NV center as a function of external pressure and temperature including detailed analysis on the contributions of macroscopic and microscopic effects. We found that the pressure dependence is governed by the change in the distance between spins as a consequence of the global compression and the additional local structural relaxation. The local structural relaxation contributes to the change of ZFS with the same magnitude as the global compression. In the case of temperature dependence of ZFS, we investigated the effect of macroscopic thermal expansion as well as the consequent change of the microscopic equilibrium positions. We could conclude that theses effects are responsible for about 15% of the observed decrease of ZFS.
  •  
43.
  • Ivády, Viktor, et al. (författare)
  • Stabilization of point-defect spin qubits by quantum wells
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Defect-based quantum systems in wide bandgap semiconductors are strong candidates for scalable quantum-information technologies. However, these systems are often complicated by charge-state instabilities and interference by phonons, which can diminish spin-initialization fidelities and limit room-temperature operation. Here, we identify a pathway around these drawbacks by showing that an engineered quantum well can stabilize the charge state of a qubit. Using density-functional theory and experimental synchrotron X-ray diffraction studies, we construct a model for previously unattributed point defect centers in silicon carbide as a near-stacking fault axial divacancy and show how this model explains these defects robustness against photoionization and room temperature stability. These results provide a materials-based solution to the optical instability of color centers in semiconductors, paving the way for the development of robust single-photon sources and spin qubits.
  •  
44.
  • Ivády, Viktor, et al. (författare)
  • Theoretical investigation of the single photon emitter carbon antisite-vacancy pair in 4H-SiC
  • 2014
  • Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2013, PTS 1 AND 2. - : Trans Tech Publications. ; , s. 495-498
  • Konferensbidrag (refereegranskat)abstract
    • Well addressable and controllable point defects in device friendly semiconductors are desired for quantum computational and quantum informational processes. Recently, such defect, an ultra-bright single photon emitter, the carbon antisite - vacancy pair, was experimentally investigated in 4H-SiC. In our theoretical work, based on ab initio calculation and group theory analysis, we provide a deeper understanding of the features of the electronic structures and the luminescence process of this defect.
  •  
45.
  • Ivády, Viktor, et al. (författare)
  • Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : AMER PHYSICAL SOC. - 1098-0121 .- 1550-235X. ; 92:11, s. 115206-
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.
  •  
46.
  • Ivády, Viktor, et al. (författare)
  • Theoretical unification of hybrid-DFT and DFT plus U methods for the treatment of localized orbitals
  • 2014
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 90:3, s. 035146-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid functionals serve as a powerful practical tool in different fields of computational physics and quantum chemistry. On the other hand, their applicability for the case of correlated d and f orbitals is still questionable and needs more considerations. In this article we formulate the on-site occupation dependent exchange correlation energy and effective potential of hybrid functionals for localized states and connect them to the on-site correction term of the DFT+ U method. The resultant formula indicates that the screening of the onsite electron repulsion is governed by the ratio of the exact exchange in hybrid functionals. Our derivation provides a theoretical justification for adding a DFT+ U-like on-site potential in hybrid-DFT calculations to resolve issues caused by overscreening of localized states. The resulting scheme, hybrid DFT+ V-w, is tested for chromium impurity in wurtzite AlN and vanadium impurity in 4H-SiC, which are paradigm examples of systems with different degrees of localization between host and impurity orbitals.
  •  
47.
  • Ivady, V., et al. (författare)
  • Transition Metal Defects in Cubic and Hexagonal Polytypes of SiC: Site Selection, Magnetic and Optical Properties from ab initio Calculations
  • 2012
  • Ingår i: Materials Science Forum Vol 717 - 720. - : Trans Tech Publications Inc.. ; , s. 205-210
  • Konferensbidrag (refereegranskat)abstract
    • Relatively little is known about the transition metal defects in silicon carbide (SiC). In this study we applied highly convergent and sophisticated density functional theory (DFT) based methods to investigate important transition metal impurities including titanium (Ti), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo) and tungsten (W) in cubic 3C and hexagonal 4H and 6H polytypes of SiC. We found two classes among the considered transition metal impurities: Ti, V and Cr clearly prefer the Si-substituting configuration while W, Nb, and Mo may form a complex with a carbon vacancy in hexagonal SiC even under thermal equilibrium with similar concentration. If the metal impurity is implanted into SiC or when many carbon impurities exist during the growth of SiC then complex formation between the Si-substituting metal impurity and the carbon vacancy should be considered. This complex pair configuration exclusively prefers the hexagonal-hexagonal sites in hexagonal polytypes and may be absent in the cubic polytype. We also studied transition metal doped nano 3C-SiC crystals in order to check the effect of the crystal field on the d-orbitals of the metal impurity.
  •  
48.
  • Janzén, Erik, 1954-, et al. (författare)
  • Defects in SiC
  • 2008
  • Ingår i: Defects in Microelectronic Materials and Devices. - : Taylor and Francis LLC. ; , s. 770-
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Uncover the Defects that Compromise Performance and Reliability As microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them.A comprehensive survey of defects that occur in silicon-based metal-oxide semiconductor field-effect transistor (MOSFET) technologies, this book also discusses flaws in linear bipolar technologies, silicon carbide-based devices, and gallium arsenide materials and devices. These defects can profoundly affect the yield, performance, long-term reliability, and radiation response of microelectronic devices and integrated circuits (ICs). Organizing the material to build understanding of the problems and provide a quick reference for scientists, engineers and technologists, this text reviews yield- and performance-limiting defects and impurities in the device silicon layer, in the gate insulator, and/or at the critical Si/SiO2 interface. It then examines defects that impact production yield and long-term reliability, including:Vacancies, interstitials, and impurities (especially hydrogen)Negative bias temperature instabilitiesDefects in ultrathin oxides (SiO2 and silicon oxynitride)Take A Proactive Approach The authors condense decades of experience and perspectives of noted experimentalists and theorists to characterize defect properties and their impact on microelectronic devices. They identify the defects, offering solutions to avoid them and methods to detect them. These include the use of 3-D imaging, as well as electrical, analytical, computational, spectroscopic, and state-of-the-art microscopic methods. This book is a valuable look at challenges to come from emerging materials, such as high-K gate dielectrics and high-mobility substrates being developed to replace Si02 as the preferred gate dielectric material, and high-mobility substrates
  •  
49.
  • Janzén, Erik, 1954-, et al. (författare)
  • The Silicon vacancy in SiC
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    •  A model is presented for the silicon vacancy in SiC. The previously reported photoluminescence spectra in 4H and 6H SiC attributed to the silicon vacancy are in this model due to internal transitions in the negative charge state of the silicon vacancy. The magnetic resonance signals observed are due to the initial and final states of these transitions.
  •  
50.
  • Janzén, Erik, et al. (författare)
  • The silicon vacancy in SiC
  • 2009
  • Ingår i: Physica. B, Condensed matter. - : Elsevier. - 0921-4526 .- 1873-2135. ; 404:22, s. 4354-4358
  • Tidskriftsartikel (refereegranskat)abstract
    • The isolated silicon vacancy is one of the basic intrinsic defects in SiC. We present new experimental data as well as new calculations on the silicon vacancy defect levels and a new model that explains the optical transitions and the magnetic resonance signals observed as occurring in the singly negative charge state of the silicon vacancy in 4H and 6H SiC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 68

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy