SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rothmaier F.) ;pers:(Blaufuss E.);pers:(Hanson K.)"

Sökning: WFRF:(Rothmaier F.) > Blaufuss E. > Hanson K.

  • Resultat 21-30 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Abbasi, R, et al. (författare)
  • Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:20, s. 201302-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.
  •  
22.
  • Abbasi, R., et al. (författare)
  • Low energy event reconstruction in IceCube DeepCore
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The reconstruction of event-level information, such as the direction or energy of a neutrino interacting in IceCube DeepCore, is a crucial ingredient to many physics analyses. Algorithms to extract this high level information from the detector's raw data have been successfully developed and used for high energy events. In this work, we address unique challenges associated with the reconstruction of lower energy events in the range of a few to hundreds of GeV and present two separate, state-of-the-art algorithms. One algorithm focuses on the fast directional reconstruction of events based on unscattered light. The second algorithm is a likelihood-based multipurpose reconstruction offering superior resolutions, at the expense of larger computational cost.
  •  
23.
  • Abbasi, R., et al. (författare)
  • Measurement of acoustic attenuation in South Pole ice
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 382-393
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 +/- 0.57 km(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda equivalent to 1/alpha of similar to 300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
  •  
24.
  • Abbasi, R., et al. (författare)
  • Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube
  • 2021
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 104:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. The interaction rate is determined by the neutrino interaction cross section and affects the flux arriving at the IceCube Neutrino Observatory, a cubic-kilometer neutrino detector embedded in the Antarctic ice sheet. We present a measurement of the neutrino cross section between 60 TeV and 10 PeV using the high-energy starting event (HESE) sample from IceCube with 7.5 years of data. The result is binned in neutrino energy and obtained using both Bayesian and frequentist statistics. We find it compatible with predictions from the Standard Model. While the cross section is expected to be flavor independent above 1 TeV, additional constraints on the measurement are included through updated experimental particle identification (PID) classifiers, proxies for the three neutrino flavors. This is the first such measurement to use a ternary PID observable and the first to account for neutrinos from tau decay.
  •  
25.
  • Abbasi, R., et al. (författare)
  • Measuring total neutrino cross section with IceCube at intermediate energies ( ~100 GeV to a few TeV)
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Konferensbidrag (refereegranskat)abstract
    • Whether studying neutrinos for their own sake or as a messenger particle, neutrino cross sections are critically important for numerous analyses. On the low energy side, measurements from accelerator experiments reach up to a few 100s of GeV. On the high energy side, neutrino-earth absorption measurements extend down to a few TeV. The intermediate energy range has yet to be measured experimentally. This work is made possible by the linear relationship between the event rate and cross section, and will utilize IceCube muon neutrino data collected between 2010 and 2018. An advanced energy reconstruction, tailored to the unique properties of the energy range and using the full description of photon propagation in ice, is applied to an event sample of neutrino-induced through-going muons to performa forward folding analysis.
  •  
26.
  • Abbasi, R., et al. (författare)
  • Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 85, s. 042002-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.
  •  
27.
  • Abbasi, R., et al. (författare)
  • Neutrino Analysis of the 2010 September Crab Nebula Flare and Time-Integrated Constraints on Neutrino Emission from the Crab Using Icecube
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 45-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for high-energy muon neutrinos with the IceCube detector in coincidence with the Crab Nebula flare reported on 2010 September by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed. gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E-upsilon(2). neutrino spectrum typical of first-order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cutoffs as observed for various Galactic sources in. gamma-rays. The 90% confidence level (CL) best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(-11) cm(-2) s(-1) TeV-1 for an E-upsilon(2). neutrino spectrum and 2.50 x 10(-10) cm(-2) s(-1) TeV-1 for a softer neutrino spectra of E-upsilon(-2.7), as indicated by Fermi measurements during the flare. In this paper, we also illustrate the impact of the time-integrated limit on the Crab neutrino steady emission. The limit obtained using 375.5 days of the 40-string configuration is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.
  •  
28.
  • Abbasi, R., et al. (författare)
  • Realtime Follow-up of Astrophysical Transients with the IceCube Neutrino Observatory
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Konferensbidrag (refereegranskat)abstract
    • Realtime analyses are necessary to identify the source of high energy neutrinos. As an observatory with a 4 pi steradian field of view and near-100% duty cycle, the IceCube Neutrino Observatory is a unique facility for investigating transients. In 2016, IceCube established a pipeline that uses low-latency data to rapidly respond to astrophysical events that were of interest to the multi-messenger observational community. Here, we describe this pipeline and summarize the results from all of the analyses performed since 2016. We focus not only on those analyses which were performed in response to transients identified using other messengers such as photons and gravitational waves, but also on how this pipeline can be used to constrain populations of astrophysical neutrino transients by following up high-energy neutrino alerts.
  •  
29.
  • Abbasi, R., et al. (författare)
  • Reconstructing Neutrino Energy using CNNs for GeV Scale IceCube Events
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Measurements of neutrinos at and below 10 GeV provide unique constraints of neutrino oscillation parameters as well as probes of potential Non-Standard Interactions (NSI). The IceCube Neutrino Observatory's DeepCore array is designed to detect neutrinos down to GeV energies. IceCube has built the world's largest data set of neutrinos >10 GeV, making searches for NSI a computational challenge. This work describes the use of convolutional neural networks (CNNs) to improve the energy reconstruction resolution and speed of reconstructing O(10 GeV) neutrino events in IceCube. Compared to current likelihood-based methods which take seconds to minutes, the CNN is expected to provide approximately a factor of 2 improvement in energy resolution while reducing the reconstruction time per event to milliseconds, which is essential for processing large datasets.
  •  
30.
  • Abbasi, R., et al. (författare)
  • Search for Astrophysical Neutrino Transients with IceCube DeepCore
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Konferensbidrag (refereegranskat)abstract
    • DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCube's energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky timedependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of 10(2) similar to 10(5) seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy