SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hamsten Anders) ;pers:(Lind Lars)"

Search: WFRF:(Hamsten Anders) > Lind Lars

  • Result 1-10 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Folkersen, Lasse, et al. (author)
  • Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease
  • 2017
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:4
  • Journal article (peer-reviewed)abstract
    • Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.
  •  
2.
  • Folkersen, Lasse, et al. (author)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Journal article (peer-reviewed)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
3.
  • Lagou, Vasiliki, et al. (author)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
4.
  • Lind, Lars, et al. (author)
  • Plasma Protein Profile of Carotid Artery Atherosclerosis and Atherosclerotic Outcomes : Meta-Analyses and Mendelian Randomization Analyses
  • 2021
  • In: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 41:5, s. 1777-1788
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: To identify causal pathophysiological mechanisms for atherosclerosis and incident cardiovascular events using protein measurements.APPROACH AND RESULTS: Carotid artery atherosclerosis was assessed by ultrasound, and 86 cardiovascular-related proteins were measured using the Olink CVD-I panel in 7 Swedish prospective studies (11 754 individuals). The proteins were analyzed in relation to intima-media thickness in the common carotid artery (IMT-CCA), plaque occurrence, and incident cardiovascular events (composite end point of myocardial infarction or ischemic stroke) using a discovery/replication approach in different studies. After adjustments for traditional cardiovascular risk factors, 11 proteins remained significantly associated with IMT-CCA in the replication stage, whereas 9 proteins were replicated for plaque occurrence and 17 proteins for incident cardiovascular events. NT-proBNP (N-terminal pro-B-type natriuretic peptide) and MMP (matrix metalloproteinase)-12 were associated with both IMT-CCA and incident events, but the overlap was considerably larger between plaque occurrence and incident events, including MMP-12, TIM-1 (T-cell immunoglobulin and mucin domain 1), GDF (growth/differentiation factor)-15, IL (interleukin)-6, U-PAR (urokinase plasminogen activator surface receptor), LOX-1 (lectin-like oxidized LDL [low-density lipoprotein] receptor 1), and TRAIL-R2 (TNF [tumor necrosis factor]-related apoptosis-inducing ligand receptor 2). Only MMP-12 was associated with IMT-CCA, plaque, and incident events with a positive and concordant direction of effect. However, a 2-sample Mendelian randomization analysis suggested that increased MMP-12 may be protective against ischemic stroke (P=5.5x10(-7)), which is in the opposite direction of the observational analyses.CONCLUSIONS: The present meta-analysis discovered several proteins related to carotid atherosclerosis that partly differed in their association with IMT-CCA, plaque, and incident atherosclerotic disease. Mendelian randomization analysis for the top finding, MMP-12, suggests that the increased levels of MMP-12 could be a consequence of atherosclerotic burden rather than the opposite chain of events.
  •  
5.
  • Lind, Lars, et al. (author)
  • The plasma protein profile and cardiovascular risk differ between intima-media thickness of the common carotid artery and the bulb : A meta-analysis and a longitudinal evaluation
  • 2020
  • In: Atherosclerosis. - : ELSEVIER IRELAND LTD. - 0021-9150 .- 1879-1484. ; 295, s. 25-30
  • Journal article (peer-reviewed)abstract
    • Background and aims: Genetic loci associated with CHD show different relationships with intima-media thickness in the common carotid artery (IMT-CCA) and in the bulb (IMT-bulb). We evaluated if IMT-CCA and IMT-bulb differ also with respect to circulating protein profiles and risk of incident atherosclerotic disease.Methods: In three Swedish cohorts (MDC, IMPROVE, PIVUS, total n > 7000), IMT-CCA and IMT-bulb were assessed by ultrasound at baseline, and 86 cardiovascular-related proteins were analyzed. In the PIVUS study only, IMT-CCA and IMT-bulb were investigated in relation to incident atherosclerotic disease over 10 years of follow-up.Results: In a meta-analysis of the analysis performed separately in the cohorts, three proteins, matrix metalloproteinase-12 (MMP-12), hepatocyte growth factor (HGF) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), were associated with IMT-CCA when adjusted for traditional cardiovascular risk factors. Five proteins were associated with IMT-bulb (MMP-12, growth/differentiation factor 15 (GDF-15), osteoprotegerin, growth hormone and renin). Following adjustment for cardiovascular risk factors, IMT-bulb was significantly more closely related to incident stroke or myocardial infarction (total number of cases, 111) than IMT-CCA in the PIVUS study (HR 1.51 for 1 SD, 95%CI 1.21-1.87, p < 0.001 vs HR 1.17, 95%CI 0.93-1.47, p = 0.16). MMP-12 levels were related to this combined end-point (HR 1.30, 95%CI 1.08-1.56, p = 0.0061).Conclusions: Elevated levels of MMP-12 were associated with both IMT-CCA and IMT-bulb, but other proteins were significantly related to IMT in only one of these locations. The finding that IMT-bulb was more closely related to incident atherosclerotic disease than IMT-CCA emphasizes a difference between these measurements of IMT.
  •  
6.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
7.
  • Scott, Robert A., et al. (author)
  • Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:9, s. 991-1005
  • Journal article (peer-reviewed)abstract
    • Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
  •  
8.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
9.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Journal article (peer-reviewed)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
10.
  • Broadaway, K Alaine, et al. (author)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • In: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Journal article (peer-reviewed)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 28
Type of publication
journal article (28)
Type of content
peer-reviewed (28)
Author/Editor
Hamsten, Anders (26)
Strawbridge, Rona J. (18)
Ingelsson, Erik (17)
Gustafsson, Stefan (17)
Esko, Tõnu (17)
show more...
Salomaa, Veikko (16)
Gieger, Christian (16)
Wareham, Nicholas J. (15)
Metspalu, Andres (15)
Loos, Ruth J F (15)
Perola, Markus (14)
van Duijn, Cornelia ... (14)
Langenberg, Claudia (14)
Boehnke, Michael (14)
Luan, Jian'an (14)
Jackson, Anne U. (14)
Tuomilehto, Jaakko (13)
de Faire, Ulf (13)
Palmer, Colin N. A. (13)
Hofman, Albert (13)
Morris, Andrew D (13)
Hayward, Caroline (13)
Grallert, Harald (13)
Groop, Leif (12)
Laakso, Markku (12)
McCarthy, Mark I (12)
Ripatti, Samuli (12)
Thorleifsson, Gudmar (12)
Stefansson, Kari (12)
Willemsen, Gonneke (12)
Gigante, Bruna (12)
Wilson, James F. (12)
Harris, Tamara B (12)
Gudnason, Vilmundur (12)
Boerwinkle, Eric (12)
Ferreira, Teresa (12)
Melander, Olle (11)
Campbell, Harry (11)
Rudan, Igor (11)
Pedersen, Nancy L (11)
Mohlke, Karen L (11)
Peters, Annette (11)
Boomsma, Dorret I. (11)
Barroso, Ines (11)
Mahajan, Anubha (11)
Hicks, Andrew A. (11)
Uitterlinden, André ... (11)
Watkins, Hugh (11)
Prokopenko, Inga (11)
show less...
University
Uppsala University (28)
Karolinska Institutet (27)
Lund University (22)
Umeå University (12)
University of Gothenburg (5)
Stockholm University (5)
show more...
Högskolan Dalarna (5)
Linköping University (2)
Stockholm School of Economics (1)
show less...
Language
English (28)
Research subject (UKÄ/SCB)
Medical and Health Sciences (25)
Natural sciences (8)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view