SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES) AMNE:(Chemical Sciences) AMNE:(Physical Chemistry) "

Sökning: AMNE:(NATURAL SCIENCES) AMNE:(Chemical Sciences) AMNE:(Physical Chemistry)

  • Resultat 1-10 av 12080
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guo, Y., et al. (författare)
  • Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O-O Bond Formation
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:26, s. 11736-11747
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic water oxidation is catalyzed by a manganese-calcium oxide cluster, which experiences five "S-states" during a light-driven reaction cycle. The unique "distorted chair"-like geometry of the Mn4CaO5(6)cluster shows structural flexibility that has been frequently proposed to involve "open" and "closed"-cubane forms from the S1 to S3states. The isomers are interconvertible in the S1 and S2states, while in the S3state, the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples. In this work, using density functional theory calculations, we go beyond the S3+Yzstate to the S3nYz•→ S4+Yzstep, and report for the first time that the reversible isomerism, which is suppressed in the S3+Yzstate, is fully recovered in the ensuing S3nYz•state due to the proton release from a manganese-bound water ligand. The altered coordination strength of the manganese-ligand facilitates formation of the closed-cubane form, in a dynamic equilibrium with the open-cubane form. This tautomerism immediately preceding dioxygen formation may constitute the rate limiting step for O2formation, and exert a significant influence on the water oxidation mechanism in photosystem II. 
  •  
2.
  • Le Breton, Michael, 1986, et al. (författare)
  • Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl-VOC production
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:17, s. 13013-13030:18, s. 13013-13030
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitryl chloride (ClNO2) accumulation at night acts as a significant reservoir for active chlorine and impacts the following day's photochemistry when the chlorine atom is liberated at sunrise. Here, we report simultaneous measurements of N2O5 and a suite of inorganic halogens including ClNO2 and reactions of chloride with volatile organic compounds (Cl-VOCs) in the gas and particle phases utilising the Filter Inlet for Gas and AEROsols time-of-flight chemical ionisation mass spectrometer (FIGAERO-ToF-CIMS) during an intensive measurement campaign 40 km northwest of Beijing in May and June 2016. A maximum mixing ratio of 2900 ppt of ClNO2 was observed with a mean campaign nighttime mixing ratio of 487 ppt, appearing to have an anthropogenic source supported by correlation with SO2, CO and benzene, which often persisted at high levels after sunrise until midday. This was attributed to such high mixing ratios persisting after numerous e-folding times of the photolytic lifetime enabling the chlorine atom production to reach 2.3 x 10(5) molecules cm(-3) from ClNO2 alone, peaking at 09:30 LT and up to 8.4 x 10(5) molecules cm(-3) when including the supporting inorganic halogen measurements. Cl-VOCs were observed in the particle and gas phases for the first time at high time resolution and illustrate how the iodide ToF-CIMS can detect unique markers of chlorine atom chemistry in ambient air from both biogenic and anthropogenic sources. Their presence and abundance can be explained via time series of their measured and steady-state calculated precursors, enabling the assessment of competing OH and chlorine atom oxidation via measurements of products from both of these mechanisms and their relative contribution to secondary organic aerosol (SOA) formation.
  •  
3.
  •  
4.
  •  
5.
  • Mohr, Claudia, et al. (författare)
  • Molecular identification of organic vapors driving atmospheric nanoparticle growth
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles formed in the atmosphere via nucleation provide about half the number of atmospheric cloud condensation nuclei, but in many locations, this process is limited by the growth of the newly formed particles. That growth is often via condensation of organic vapors. Identification of these vapors and their sources is thus fundamental for simulating changes to aerosol-cloud interactions, which are one of the most uncertain aspects of anthropogenic climate forcing. Here we present direct molecular-level observations of a distribution of organic vapors in a forested environment that can explain simultaneously observed atmospheric nanoparticle growth from 3 to 50 nm. Furthermore, the volatility distribution of these vapors is sufficient to explain nanoparticle growth without invoking particle-phase processes. The agreement between observed mass growth, and the growth predicted from the observed mass of condensing vapors in a forested environment thus represents an important step forward in the characterization of atmospheric particle growth.
  •  
6.
  • Li, J. J., et al. (författare)
  • Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer
  • 2019
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 124:10, s. 5629-5649
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol mass spectrometry was used to characterize submicron aerosols before and after aging in a Gothenburg Potential Aerosol Mass (Go:PAM) reactor at two suburban sites in China, one in northern China at Changping (CP), Beijing, and a second in southern China at Hong Kong (HK). Organic aerosol (OA) dominated in the ambient nonrefractory particulate matter <1m (NR-PM1) for both CP (42-71%) and HK (43-61%), with a large contribution from secondary OA factors that were semivolatile oxygenated (SVOOA) and low-volatility oxygenated (LVOOA). Under constant OH exposure, OA enhancement (78-98%) dominated the NR-PM1 mass increment at both sites, while nitrate was enhanced the most among the inorganic species (7-9%). Overall, the CP site exhibited higher OA oxidation potential and more enhancement of SVOOA than LVOOA (7.5 vs. 2.7g/m(3)), but the reverse was observed in HK (0.8 vs. 2.6g/m(3)). In CP, more enhancement of the less oxygenated SVOOA suggests that aerosol aging was more sensitive to the abundant locally emitted primary OA and volatile organic compound precursors. On the contrary, the more formation of the highly oxidized LVOOA in HK indicates that aerosol aging mainly escalated the degree of oxygenation of OA as ambient aerosol was already quite aged and there was a lack of volatile organic compound precursors. The comparative measurements using the same oxidation system reveal distinct key factors and mechanisms that influence secondary aerosol formation in two suburban locations in China, providing scientific insights to assist formulation of location-specific mitigation measures of secondary pollution. Plain Language Summary Atmospheric submicron particles have significant impacts on the climate and human health. A large part of these particles are formed secondarily through successive aging of primary emissions. To study such aging processes, we used a reactor that can provide highly oxidizing conditions to simulate the oxidation of ambient aerosols at accelerated rates. An online mass spectrometer was connected after the reactor to measure changes in aerosol mass concentration and chemical composition between the ambient samples and the oxidized ones. We presented the first comparative measurements of the aging potentials of ambient aerosols in two suburban sites in northern and southern China (Changping District in Beijing, and Hong Kong). Results showed that generally aerosols at the Changping site had higher aging potentials after passing through the oxidation reactor, probably due to more local emissions of precursors, while air masses in Hong Kong were already in a higher oxidation state with lower aging potentials, mainly because of strong impacts from long-range transported pollution sources. Distinct aerosol aging pathways related to different ambient precursors were observed at the two sites. Understanding of the different characteristics of aerosol aging processes can lead to advances in air quality modeling and pollution management.
  •  
7.
  • Halldin Stenlid, Joakim, 1987- (författare)
  • Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper Corrosion
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The chemical bond – a corner stone in science and a prerequisite for life – is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden.In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface.An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compound’s local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces.Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology.
  •  
8.
  • Wu, R. R., et al. (författare)
  • Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:13, s. 10799-10824
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Julich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-offlight chemical ionization mass spectrometer using Br as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C-4 and C-5 products) and dimers (C-10 products) with 1-3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80% of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5% from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.
  •  
9.
  • Brownwood, B., et al. (författare)
  • Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes
  • 2021
  • Ingår i: Acs Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 785-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO(3)Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 +/- 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with similar to 50 mu g m(-3) inorganic seed aerosol and 2-5 mu g m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically similar to 100 ppb O-3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K-p similar to 10(-3) m(3) mu g(-1)), indicating an average volatility corresponding to a C-5 hydroxy hydroperoxy nitrate.
  •  
10.
  • Maurina Morais, Eduardo, 1989, et al. (författare)
  • Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322. ; 360
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98–99% m/m) and dry (128–553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is constructed of only glass and chemically resistant polymer (PTFE and PVDF) parts, which avoid other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). This process is described in detail in the paper as well as in a video. The resulting ionic liquids were carefully analyzed by spectroscopic and thermal methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12080
Typ av publikation
tidskriftsartikel (9958)
doktorsavhandling (751)
konferensbidrag (472)
forskningsöversikt (237)
annan publikation (231)
licentiatavhandling (219)
visa fler...
bokkapitel (156)
bok (22)
rapport (16)
patent (10)
samlingsverk (redaktörskap) (7)
konstnärligt arbete (3)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (10460)
övrigt vetenskapligt/konstnärligt (1589)
populärvet., debatt m.m. (30)
Författare/redaktör
Nordén, Bengt, 1945 (228)
Antzutkin, Oleg (211)
Lindman, Björn (185)
Nylander, Tommy (181)
Hagfeldt, Anders (170)
Boschloo, Gerrit (166)
visa fler...
Forsling, Willis (158)
Olsson, Ulf (150)
Ågren, Hans (127)
Sá, Jacinto (120)
Skoglundh, Magnus, 1 ... (119)
Linse, Per (117)
Grönbeck, Henrik, 19 ... (107)
Topgaard, Daniel (97)
Ahuja, Rajeev, 1965- (96)
Claesson, Per M. (94)
Söderman, Olle (85)
Piculell, Lennart (83)
Holmgren, Allan (83)
Albinsson, Bo, 1963 (78)
Schillén, Karin (77)
Rensmo, Håkan (76)
Sparr, Emma (75)
Furo, Istvan (73)
Hammarström, Leif, 1 ... (72)
Schurtenberger, Pete ... (72)
Panas, Itai, 1959 (72)
Johansson, Patrik, 1 ... (72)
Lincoln, Per, 1958 (72)
Zheng, Kaibo (69)
Ivanov, Alexander, V (69)
Linse, Sara (68)
Matic, Aleksandar, 1 ... (67)
Wennerström, Håkan (64)
Carlsson, Per-Anders ... (63)
Wilhelmsson, Marcus, ... (63)
Filippov, Andrei (63)
Ahuja, Rajeev (62)
Kloo, Lars (60)
Erhart, Paul, 1978 (57)
Johansson, Erik M. J ... (56)
Wang, Ergang, 1981 (56)
Sun, Licheng (56)
Lundgren, Edvin (55)
Nyman, Gunnar, 1957 (55)
Alfredsson, Viveka (55)
Moth-Poulsen, Kasper ... (55)
Halle, Bertil (55)
Hammarström, Leif (54)
Jonsson, Mats, 1967- (53)
visa färre...
Lärosäte
Chalmers tekniska högskola (3148)
Lunds universitet (2729)
Uppsala universitet (2616)
Kungliga Tekniska Högskolan (2120)
Göteborgs universitet (882)
Luleå tekniska universitet (832)
visa fler...
Stockholms universitet (779)
Linköpings universitet (596)
Umeå universitet (495)
RISE (359)
Malmö universitet (166)
Karlstads universitet (135)
Sveriges Lantbruksuniversitet (109)
Mittuniversitetet (87)
Karolinska Institutet (63)
Örebro universitet (62)
Linnéuniversitetet (55)
Mälardalens universitet (28)
Högskolan i Borås (27)
Högskolan Kristianstad (22)
Högskolan Dalarna (15)
Högskolan i Gävle (12)
Högskolan i Halmstad (10)
Högskolan Väst (9)
Södertörns högskola (6)
IVL Svenska Miljöinstitutet (6)
Jönköping University (5)
Högskolan i Skövde (4)
Naturhistoriska riksmuseet (3)
Blekinge Tekniska Högskola (3)
Gymnastik- och idrottshögskolan (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (12037)
Svenska (33)
Ryska (3)
Odefinierat språk (2)
Tyska (1)
Spanska (1)
visa fler...
Finska (1)
Nederländska (1)
Kinesiska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12079)
Teknik (1724)
Medicin och hälsovetenskap (268)
Lantbruksvetenskap (34)
Samhällsvetenskap (24)
Humaniora (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy