SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0168 2563 OR L773:1573 515X "

Sökning: L773:0168 2563 OR L773:1573 515X

  • Resultat 1-10 av 143
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramoff, Rose Z., et al. (författare)
  • How much carbon can be added to soil by sorption?
  • 2021
  • Ingår i: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 152:2-3, s. 127-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the upper limit of stable soil carbon storage is essential for guiding policies to increase soil carbon storage. One pool of carbon considered particularly stable across climate zones and soil types is formed when dissolved organic carbon sorbs to minerals. We quantified, for the first time, the potential of mineral soils to sorb additional dissolved organic carbon (DOC) for six soil orders. We compiled 402 laboratory sorption experiments to estimate the additional DOC sorption potential, that is the potential of excess DOC sorption in addition to the existing background level already sorbed in each soil sample. We estimated this potential using gridded climate and soil geochemical variables within a machine learning model. We find that mid- and low-latitude soils and subsoils have a greater capacity to store DOC by sorption compared to high-latitude soils and topsoils. The global additional DOC sorption potential for six soil orders is estimated to be 107 ± 13 Pg C to 1 m depth. If this potential was realized, it would represent a 7% increase in the existing total carbon stock.
  •  
2.
  • Akselsson, Cecilia, et al. (författare)
  • Can increased weathering rates due to future warming compensate for base cation losses following whole-tree harvesting in spruce forests?
  • 2016
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 128:1-2, s. 89-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-tree harvesting, i.e. harvesting of stems, branches and tops, has become increasingly common during recent decades due to the increased demand for renewable energy. Whole-tree harvesting leads to an increase in base cation losses from the ecosystem, which can counteract recovery from acidification. An increase in weathering rates due to higher temperatures is sometimes suggested as a process that may counteract the acidifying effect of whole-tree harvesting. In this study the potential effect of increasing temperature on weathering rates was compared with the increase in base cation losses following whole-tree harvesting in spruce forests, along a temperature gradient in Sweden. The mechanistic model PROFILE was used to estimate weathering rates at National Forest Inventory sites at today’s temperature and the temperature in 2050, as estimated by two different climate projections. The same dataset was used to calculate base cation losses following stem-only and whole-tree harvesting. The calculations showed that the increase in temperature until 2050 would result in an increase in the base cation weathering rate of 20–33 %, and that whole-tree harvesting would lead to an increase in base cation losses of 66 % on average, compared to stem-only harvesting. A sensitivity analysis showed that moisture changes are important for future weathering rates, but the effect of the temperature change was dominating even when the most extreme moisture changes were applied. It was concluded that an increase in weathering rates resulting from higher temperatures would not compensate for the increase in base cation losses following whole-tree harvesting, except in the northernmost part of Sweden.
  •  
3.
  • Alfredsson, Hanna, et al. (författare)
  • Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 124:1-3, s. 441-459
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the distribution, storage and landscape partitioning of soil amorphous silica (ASi) in a central Canadian region dominated by tundra and peatlands to provide a first estimate of the amount of ASi stored in Arctic permafrost ecosystems. We hypothesize that, similar to soil organic matter, Arctic soils store large amounts of ASi which may be affected by projected climate changes and associated changes in permafrost regimes. Average soil ASi storage (top 1 m) ranged between 9600 and 83,500 kg SiO2 ha(-1) among different land-cover types. Lichen tundra contained the lowest amounts of ASi while no significant differences were found in ASi storage among other land-cover types. Clear differences were observed between ASi storage allocated into the top organic versus the mineral horizon of soils. Bog peatlands, fen peatlands and wet shrub tundra stored between 7090 and 45,400 kg SiO2 ha(-1) in the top organic horizon, while the corresponding storage in lichen tundra, moist shrub- and dry shrub tundra only amounted to 1500-1760 kg SiO2 ha(-1). Diatoms and phytoliths are important components of ASi storage in the top organic horizon of peatlands and shrub tundra systems, while it appears to be a negligible component of ASi storage in the mineral horizon of shrub tundra classes. ASi concentrations decrease with depth in the soil profile for fen peatlands and all shrub tundra classes, suggesting recycling of ASi, whereas bog peatlands appeared to act as sinks retaining stored ASi on millennial time scales. Our results provide a conceptual framework to assess the potential effects of climate change impacts on terrestrial Si cycling in the Arctic. We believe that ASi stored in peatlands are particularly sensitive to climate change, because a larger fraction of the ASi pool is stored in perennially frozen ground compared to shrub tundra systems. A likely outcome of climate warming and permafrost thaw could be mobilization of previously frozen ASi, altered soil storage of biogenically derived ASi and an increased Si flux to the Arctic Ocean.
  •  
4.
  • Andrén, Olof, et al. (författare)
  • Carbon balances in US croplands during the last two decades of the twentieth century
  • 2012
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 107, s. 207-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon (C) added to soil as organic matter in crop residues and carbon emitted to the atmosphere as CO(2) in soil respiration are key determinants of the C balance in cropland ecosystems. We used complete and comprehensive county-level yields and area data to estimate and analyze the spatial and temporal variability of regional and national scale residue C inputs, net primary productivity (NPP), and C stocks in US croplands from 1982 to 1997. Annual residue C inputs were highest in the North Central and Central and Northern Plains regions that comprise similar to 70% of US cropland. Average residue C inputs ranged from 1.8 (Delta States) to 3.0 (North Central region) Mg C ha(-1) year(-1), and average NPP ranged from 3.1 (Delta States) to 5.4 (Far West region) Mg C ha(-1) year(-1). Residue C inputs tended to be inversely proportional to the mean growing season temperature. A quadratic relationship incorporating the growing season mean temperature and total precipitation closely predicted the variation in residue C inputs in the North Central region and Central and Northern Plains. We analyzed the soil C balance using the crop residue database and the Introductory Carbon Balance regional Model (ICBMr). Soil C stocks (0-20 cm) on permanent cropland ranged between 3.07 and 3.1 Pg during the study period, with an average increase of similar to 4 Tg C year(-1), during the 1990s. Interannual variability in soil C stocks ranged from 0 to 20 Tg C (across a mean C stock of 3.08 +/- A 0.01 Pg) during the study period; interannual variability in residue C inputs varied between 1 and 43 Tg C (across a mean input of 220 +/- A 19 Tg). Such interannual variation has implications for national estimates of CO(2) emissions from cropland soils needed for implementation of greenhouse gas (GHG) mitigation strategies involving agriculture.
  •  
5.
  • Andresen, Louise C., 1974, et al. (författare)
  • Nitrogen dynamics after two years of elevated CO2 in phosphorus limited Eucalyptus woodland
  • 2020
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 150, s. 297-312
  • Tidskriftsartikel (refereegranskat)abstract
    • It is uncertain how the predicted further rise of atmospheric carbon dioxide (CO2) concentration will affect plant nutrient availability in the future through indirect effects on the gross rates of nitrogen (N) mineralization (production of ammonium) and depolymerization (production of free amino acids) in soil. The response of soil nutrient availability to increasing atmospheric CO2 is particularly important for nutrient poor ecosystems. Within a FACE (Free-Air Carbon dioxide Enrichment) experiment in a native, nutrient poor Eucalyptus woodland (EucFACE) with low soil organic matter (≤ 3%), our results suggested there was no shortage of N. Despite this, microbial N use efficiency was high (c. 90%). The free amino acid (FAA) pool had a fast turnover time (4 h) compared to that of ammonium (NH4+) which was 11 h. Both NH4-N and FAA-N were important N pools; however, protein depolymerization rate was three times faster than gross N mineralization rates, indicating that organic N is directly important in the internal ecosystem N cycle. Hence, the depolymerization was the major provider of plant available N, while the gross N mineralization rate was the constraining factor for inorganic N. After two years of elevated CO2, no major effects on the pools and rates of the soil N cycle were found in spring (November) or at the end of summer (March). The limited response of N pools or N transformation rates to elevated CO2 suggest that N availability was not the limiting factor behind the lack of plant growth response to elevated CO2, previously observed at the site.
  •  
6.
  • Angeler, David (författare)
  • A worldwide view of organic carbon export from catchments
  • 2012
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 107, s. 275–293-
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing interest in the effects of global change on the metabolism, stoichiometry and cycling of carbon in aquatic ecosystems has motivated research on the export of organic carbon (OCE) from catchments. In this article, quantitative and functional features of the annual export rates of total, particulate and dissolved organic carbon (TOC, POC and DOC) were reviewed, and the stoichiometry of export (OC:N, OC:P and N:P) from 550 catchments worldwide was reported. TOC export ranged 2.1-92,474 kg C km(-2) year(-1), POC export ranged 0.4-73,979 kg C km(-2) year(-1) and DOC export ranged 1.2-56,946 kg C km(-2) year(-1). Exports of TOC and DOC were strongly linked, but POC export was unrelated to DOC. The DOC fraction comprised on average 73 +/- A 21% of TOC export. The export rates of organic carbon were poorly related to those of total nitrogen and total phosphorus. Discrete and continuous environmental variables failed to predict TOC export, but DOC export was influenced by discharge and catchment area worldwide. Models of OCE in different catchment types were controlled by different environmental variables; hydrological variables were generally better predictors of OCE than anthropogenic and soil variables. Elemental ratios of carbon export in most catchments were above the Redfield ratio, suggesting that phosphorus may become the limiting nutrient for downstream plant growth. These ratios were marginally related to environmental data. More detailed hydrological data, consideration of in-stream processes and the use of quasi-empirical dynamical models are advocated to improve our knowledge of OCE rates and those of other nutrients.
  •  
7.
  • Averill, Colin, et al. (författare)
  • Microbial-mediated redistribution of ecosystem nitrogen cycling can delay progressive nitrogen limitation
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 1573-515X .- 0168-2563. ; 126:1-2, s. 11-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil nitrogen (N) availability constrains future predictions of ecosystem primary productivity and carbon storage. The progressive N limitation (PNL) hypothesis predicts that forest net primary productivity (NPP) will decline with age, and that the response of NPP to elevated CO2 will attenuate through time due to negative feedbacks of NPP on the soil N cycle. A central assumption of the PNL hypothesis is that, without changes in exogenous exchange of N in an ecosystem, increases in plant N uptake require increased soil N cycling rates. However, at ecosystem scale, microbial N uptake exceeds plant uptake. Hence, a change in the partitioning of N between plants and soil microorganisms may represent an alternative mechanism to sustain plant N uptake in the face of PNL. To estimate N partitioning of total N cycling between plants and microbes, we measured and modeled growth and N uptake of trees, bacteria, saprotrophic fungi, and ectomycorrhizal fungi across a forest succession and N limitation gradient. The combined plant and ectomycorrhizal N uptake increased from early to late succession, and nearly matched saprotrophic N uptake in late successional sites, while total N cycling remained stable or even declined. Changes in microbial community structure can thus mediate a redistribution of ecosystem nitrogen cycling, allowing an increase in plant N uptake without concomitant increases in soil N cycling. We further suggest that microbe-mediated changes in N partitioning can delay PNL and may thereby act as a mechanism to extend the duration of the land carbon sink in response to rising atmospheric CO2.
  •  
8.
  • Bade, Darren L., et al. (författare)
  • Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions
  • 2007
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 1573-515X .- 0168-2563. ; 84:2, s. 115-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Four whole- lake inorganic C-13 addition experiments were conducted in lakes of differing trophic status. Inorganic C-13 addition enriched algal carbon in C-13 and changed the delta C-13- DOC by + 1.5 parts per thousand to + 9.5 parts per thousand, depending on the specific lake. This change in delta C-13- DOC represented a significant input of algal DOC that was not completely consumed by bacteria. We modeled the dynamics in delta C-13- DOC to estimate the fluxes of algal and terrestrial carbon to and from the DOC pool, and determine the composition of the standing stock. Two experiments in lightly stained, oligotrophic lakes indicated that algal production was the source of about 20% of the DOC pool. In the following year, the experiment was repeated in one of these lakes under conditions of nutrient enrichment, and in a third, more humic lake. Algal contributions to the DOC pool were 40% in the nutrient enriched lake and 5% in the more humic lake. Spectroscopic and elemental analyses corroborated the presence of increased algal DOC in the nutrient enriched lake. Natural abundance measurements of the delta C-13 of DOC in 32 lakes also revealed the dual contributions of both terrestrial and algal carbon to DOC. From these results, we suggest an approach for inferring the contribution of algal and terrestrial DOC using easily measurable parameters.
  •  
9.
  • Berg, Björn, et al. (författare)
  • Factors influencing limit values for pine needle litter decomposition : A synthesis for boreal and temperate pine forest systems
  • 2010
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 100:1, s. 57-73
  • Tidskriftsartikel (refereegranskat)abstract
    • We synthesized available data for decomposition of pine (Pinus) needle litter in pine forests to determine the litter chemical characteristics and climate factors that explained variation in the limit value, i. e. the level of accumulated mass loss at which the decomposition process either continues at a very low rate or possibly stops. Our data base included 56 separate studies on decomposition of pine needle litter, spanning Scots pine, lodgepole pine, Aleppo pine, stone pine and white pine, mainly incubated at the site of collection. Studies had 5 to 19 samplings, on average 10, and the decomposition was followed to a mass loss ranging from 47 to 83%, on average 67%. The periods from 3.0 to 5.4 years, on average 3.9 years, were of sufficient duration to allow estimates of limit values of decomposition. We used a linear mixed model with regression effects to relate limit values to potential explanatory variables, namely the sites' long-term mean annual temperature (MAT) and mean annual precipitation (MAP) and to substrate-chemistry factors. Regarding the latter, we explored two models; one that included initial concentrations of water solubles, lignin, N, P, K, Ca, Mg, and Mn and one that included only lignin, N, Ca, and Mn to focus on those nutrients known to influence lignin degradation. Using backward elimination significant explanatory variables were determined. For litter decomposed in its site of origin we found the limit value to depend mainly on the initial concentration of Mn, with higher Mn concentrations resulting in higher accumulated mass loss. Thus, litter with higher Mn reached a higher limit value and left a smaller stable fraction. This is likely due to the fact that Mn is an essential component of ligninolytic enzymes important for degrading litter in the later stages of decomposition. Manganese has received little attention in decomposition studies to date. Given its significance in this synthesis, the role of Mn in influencing variation in the late stages of decomposition among ecosystems and among litters of other genera besides Pinus deserves further attention.
  •  
10.
  • Berggren Kleja, Dan (författare)
  • Old carbon in young fine roots in boreal forests
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 125, s. 37-46
  • Tidskriftsartikel (refereegranskat)abstract
    • A large proportion of the soil carbon (C) in boreal forests originates from roots and ectomycorrhizal fungi, and accurate quantification of fine-root litter production is needed. Methods for determination of root turnover have been under debate in recent years. Two recently used methods-radiocarbon (C-14) dating and use of minirhizotrons (MR)-have yielded different results. This has been attributed to analysis of different roots by use of these methods. At Flakaliden, northern Sweden, in a long-term soil warming and irrigation experiment, we compared MR lifespan with the C-14-derived age of fine roots from soil cores of the same root diameter class. We also determined the C-14-derived age of ingrowth core roots of Norway spruce. The median lifespan of fine roots around MR tubes installed 15 years previously was shorter than 2.5 years whereas the C-14-derived age of the fine roots from soil cores varied from recently grown to 14 years. Correspondingly, the age of C-14 in fine roots harvested from ingrowth cores installed in soil 3 months previously was between 1 and 20 years. Thus, cellulose in these roots contained older C-14 than is possible from photosynthesis during the time of cellulose formation. By investigating whether the age of Norway spruce and Scots pine seedlings was less than their root C-14-derived age, we tested the possibility of root C originating from soil uptake. This was found to be unlikely, because fine roots of four and eight-year-old seedlings had C-14 that was dated to be as old as or younger than the seedlings. We propose that further effort is required to identify the ecological conditions leading to root growth utilization of stored or recycled C.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 143
Typ av publikation
tidskriftsartikel (143)
Typ av innehåll
refereegranskat (143)
Författare/redaktör
Laudon, Hjalmar (6)
Lindroth, Anders (5)
Giesler, Reiner (5)
Conley, Daniel (5)
Humborg, Christoph (5)
Rütting, Tobias, 197 ... (5)
visa fler...
Berggren Kleja, Dan (5)
Ström, Lena (4)
Bergkvist, Bo (4)
Christensen, Torben (4)
Mastepanov, Mikhail (4)
Svensson, Magnus (3)
Persson, Per (3)
Rousk, Johannes (3)
Bastviken, David (3)
Stadmark, Johanna (3)
Berggren, Martin (3)
Clymans, Wim (3)
Öberg, Gunilla (3)
Mörth, Carl-Magnus (3)
Kätterer, Thomas (3)
Catalán, Núria (3)
Klemedtsson, Leif, 1 ... (3)
Svensson, Teresia, 1 ... (3)
Weslien, Per, 1963 (3)
Struyf, Eric (3)
Svensson, M. (2)
Kothawala, Dolly (2)
Mulder, J (2)
Schmidt, Niels Marti ... (2)
Wild, Birgit (2)
Finlay, Roger (2)
Rydin, Emil (2)
Brüchert, Volker (2)
Lundström, Ulla (2)
Zhang, Wenxin (2)
Berg, Björn (2)
Hensgens, Geert (2)
Bonaglia, Stefano, 1 ... (2)
Bindler, Richard (2)
Sandén, Per (2)
Conley, Daniel J. (2)
Moldan, Filip (2)
Gustafsson, David (2)
Broman, Curt (2)
Boeckx, P. (2)
Jansson, PE (2)
Voss, Maren (2)
Wardle, David (2)
Fröberg, Mats (2)
visa färre...
Lärosäte
Lunds universitet (39)
Sveriges Lantbruksuniversitet (34)
Stockholms universitet (25)
Umeå universitet (19)
Göteborgs universitet (16)
Uppsala universitet (13)
visa fler...
Linköpings universitet (9)
Kungliga Tekniska Högskolan (8)
Mittuniversitetet (4)
Naturhistoriska riksmuseet (4)
Luleå tekniska universitet (3)
Högskolan i Gävle (3)
IVL Svenska Miljöinstitutet (3)
Högskolan i Halmstad (1)
Örebro universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (143)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (111)
Lantbruksvetenskap (37)
Teknik (4)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy