SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0893 7648 OR L773:1559 1182 "

Sökning: L773:0893 7648 OR L773:1559 1182

  • Resultat 1-10 av 108
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Watts, Michelle, et al. (författare)
  • MicroRNA-210 regulates dendritic morphology and behavioural flexibility in mice
  • 2021
  • Ingår i: Molecular Neurobiology. - Stockholm : Karolinska Institutet, Dept of Women's and Children's Health. - 0893-7648 .- 1559-1182.
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs are known to be critical regulators of neuronal plasticity. The highly-conserved, hypoxia- regulated microRNA-210 (miR-210) has been shown to be associated with long term memory in invertebrates and dysregulated in neurodevelopmental and neurodegenerative disease models. However, the role of miR-210 in mammalian neuronal function and cognitive behavior remains unexplored. Here we generated Nestin-cre driven miR-210 neuronal knockout mice to characterise miR-210 regulation and function using in vitro and in vivo methods. We identified miR-210 localisation throughout neuronal somas and dendritic processes and increased levels of mature miR- 210 in response to neural activity in vitro. Loss of miR-210 in neurons resulted in higher oxidative phosphorylation and ROS production following hypoxia and increased dendritic arbour density in hippocampal cultures. Additionally, miR-210 knockout mice displayed altered behavioral flexibility in rodent touchscreen tests, particularly during early reversal learning suggesting processes underlying updating of information and feedback were impacted. Our findings support a conserved, activity- dependent role for miR-210 in neuroplasticity and cognitive function.
  •  
2.
  • Akkuratov, Evgeny E., et al. (författare)
  • Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor.
  • 2020
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 57:10, s. 4018-4030
  • Tidskriftsartikel (refereegranskat)abstract
    • The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 μM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor-dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.
  •  
3.
  •  
4.
  • Balleza-Tapia, H, et al. (författare)
  • Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na+/K+-ATPase
  • 2020
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 57:2, s. 1170-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
  •  
5.
  •  
6.
  • Bazov, Igor, 1973-, et al. (författare)
  • Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics.
  • 2018
  • Ingår i: Molecular Neurobiology. - : Springer. - 0893-7648 .- 1559-1182. ; 55:8, s. 7049-7061
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
  •  
7.
  •  
8.
  • Bieder, A, et al. (författare)
  • Dyslexia Candidate Gene and Ciliary Gene Expression Dynamics During Human Neuronal Differentiation
  • 2020
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 57:7, s. 2944-2958
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental dyslexia (DD) is a neurodevelopmental condition with complex genetic mechanisms. A number of candidate genes have been identified, some of which are linked to neuronal development and migration and to ciliary functions. However, expression and regulation of these genes in human brain development and neuronal differentiation remain uncharted. Here, we used human long-term self-renewing neuroepithelial stem (lt-NES, here termed NES) cells derived from human induced pluripotent stem cells to study neuronal differentiation in vitro. We characterized gene expression changes during differentiation by using RNA sequencing and validated dynamics for selected genes by qRT-PCR. Interestingly, we found that genes related to cilia were significantly enriched among upregulated genes during differentiation, including genes linked to ciliopathies with neurodevelopmental phenotypes. We confirmed the presence of primary cilia throughout neuronal differentiation. Focusing on dyslexia candidate genes, 33 out of 50 DD candidate genes were detected in NES cells by RNA sequencing, and seven candidate genes were upregulated during differentiation to neurons, including DYX1C1 (DNAAF4), a highly replicated DD candidate gene. Our results suggest a role of ciliary genes in differentiating neuronal cells and show that NES cells provide a relevant human neuronal model to study ciliary and DD candidate genes.
  •  
9.
  • Borroto-Escuela, Dasiel O., et al. (författare)
  • Acute Cocaine Enhances Dopamine D2R Recognition and Signaling and Counteracts D2R Internalization in Sigma1R-D2R Heteroreceptor Complexes
  • 2019
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 56:10, s. 7045-7055
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study was performed to establish the actions of nanomolar concentrations of cocaine, not blocking the dopamine transporter, on dopamine D2 receptor (D2R)-sigma 1 receptor (delta 1R) heteroreceptor complexes and the D2R protomer recognition, signaling and internalization in cellular models. We report the existence of D2R-delta 1R heteroreceptor complexes in subcortical limbic areas as well as the dorsal striatum, with different distribution patterns using the in situ proximity ligation assay. Also, through BRET, these heteromers were demonstrated in HEK293 cells. Furthermore, saturation binding assay demonstrated that in membrane preparations of HEK293 cells coexpressing D2R and delta 1R, cocaine (1 nM) significantly increased the D2R B-max values over cells singly expressing D2R. CREB reporter luc-gene assay indicated that coexpressed delta 1R significantly reduced the potency of the D2R-like agonist quinpirole to inhibit via D2R activation the forskolin induced increase of the CREB signal. In contrast, the addition of 100 nM cocaine was found to markedly increase the quinpirole potency to inhibit the forskolin-induced increase of the CREB signal in the D2R-delta 1R cells. These events were associated with a marked reduction of cocaine-induced internalization of D2R protomers in D2R-delta 1R heteromer-containing cells vs D2R singly expressing cells as studied by means of confocal analysis of D2R-delta 1R trafficking and internalization. Overall, the formation of D2R-delta 1R heteromers enhanced the ability of cocaine to increase the D2R protomer function associated with a marked reduction of its internalization. The existence of D2R-delta 1R heteromers opens up a new understanding of the acute actions of cocaine.
  •  
10.
  • Borroto-Escuela, Dasiel O., et al. (författare)
  • Disruption of A2AR-D2R Heteroreceptor Complexes After A2AR Transmembrane 5 Peptide Administration Enhances Cocaine Self-Administration in Rats
  • 2018
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 55:8, s. 7038-7048
  • Tidskriftsartikel (refereegranskat)abstract
    • Antagonistic allosteric A2AR-D2R receptor-receptor interactions in heteroreceptor complexes counteract cocaine self-administration and cocaine seeking in rats as seen in biochemical and behavioral experiments. It was shown that the human A2AR transmembrane five (TM5) was part of the interface of the human A2AR-D2R receptor heteromer. In the current paper, the rat A2AR synthetic TM5 (synthTM5) peptide disrupts the A2AR-D2R heteroreceptor complex in HEK293 cells as shown by the bioluminescence resonance energy transfer method. Rat A2AR synthTM5 peptide, microinjected into the nucleus accumbens, produced a complete counteraction of the inhibitory effects of the A2AR agonist CGS21680 on cocaine self-administration. It was linked to a disappearance of the accumbal A2AR-D2R heteroreceptor complexes and the A2AR agonist induced inhibition of D2R recognition using proximity ligation assay and biochemical binding techniques. However, possible effects of the A2AR synthTM5 peptide on accumbal A2AR-D3R and A2AR-D4R heteroreceptor complexes remain to be excluded. Evidence is provided that accumbal A2AR-D2R-like heteroreceptor complexes with their antagonistic receptor-receptor interactions can be major targets for treatment of cocaine use disorder.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 108
Typ av publikation
tidskriftsartikel (103)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (103)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Sharma, Aruna (15)
Bazan, NG (14)
Sharma, Hari Shanker (9)
Blennow, Kaj, 1958 (4)
Winblad, B (4)
Zhu, Changlian, 1964 (4)
visa fler...
Lukiw, WJ (4)
Bazan, N (4)
Boylan, GB (3)
Murray, DM (3)
Hallberg, B (3)
Wieloch, Tadeusz (3)
Behbahani, H (3)
Fuxe, Kjell (3)
Borroto-Escuela, Das ... (3)
Chen, Y. (2)
Zhu, J. (2)
Mallet, J. (2)
Zetterberg, Henrik, ... (2)
Landén, Mikael, 1966 (2)
Bjorkhem, I (2)
Schiöth, Helgi B. (2)
Cichon, S (2)
Muller-Myhsok, B (2)
Nothen, MM (2)
Rietschel, M (2)
Martin, NG (2)
Ahearne, CE (2)
Forssberg, H (2)
Samuelsson, EB (2)
Cedazo-Minguez, A (2)
Wang, Xiaoyang, 1965 (2)
Carlsson, Jens (2)
Leboyer, M. (2)
Pekna, Marcela, 1966 (2)
Pekny, Milos, 1965 (2)
Wiklund, Lars (2)
Heijtz, RD (2)
Qian, Y (2)
Blomgren, K (2)
Li, Tao (2)
Larsson, SC (2)
Palacios-Pelaez, R (2)
Yuan, S (2)
Wydra, Karolina (2)
Romero Fernandez, Wi ... (2)
Filip, Malgorzata (2)
Narváez, Manuel (2)
Mateos, L (2)
Looney, AM (2)
visa färre...
Lärosäte
Karolinska Institutet (65)
Uppsala universitet (26)
Göteborgs universitet (18)
Lunds universitet (8)
Stockholms universitet (4)
Linköpings universitet (3)
visa fler...
Örebro universitet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Mälardalens universitet (1)
visa färre...
Språk
Engelska (108)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (50)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy