SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1545 7885 "

Sökning: L773:1545 7885

  • Resultat 1-10 av 170
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ah-King, Malin, et al. (författare)
  • Genital Evolution : Why Are Females Still Understudied?
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 12:5, s. e1001851-
  • Tidskriftsartikel (refereegranskat)abstract
    • The diversity, variability, and apparent rapid evolution of animal genitalia are a vivid focus of research in evolutionary biology, and studies exploring genitalia have dramatically increased over the past decade. These studies, however, exhibit a strong male bias, which has worsened since 2000, despite the fact that this bias has been explicitly pointed out in the past. Early critics argued that previous investigators too often considered only males and their genitalia, while overlooking female genitalia or physiology. Our analysis of the literature shows that overall this male bias has worsened with time. The degree of bias is not consistent between subdisciplines: studies of the lock-and-key hypothesis have been the most male focused, while studies of cryptic female choice usually consider both sexes. The degree of bias also differed across taxonomic groups, but did not associate with the ease of study of male and female genital characteristics. We argue that the persisting male bias in this field cannot solely be explained by anatomical sex differences influencing accessibility. Rather the bias reflects enduring assumptions about the dominant role of males in sex, and invariant female genitalia. New research highlights how rapidly female genital traits can evolve, and how complex coevolutionary dynamics between males and females can shape genital structures. We argue that understanding genital evolution is hampered by an outdated single-sex bias.
  •  
2.
  • Alerstam, Thomas, et al. (författare)
  • Flight speeds among bird species : allometric and phylogenetic effects.
  • 2007
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 5:8, s. e197-
  • Tidskriftsartikel (refereegranskat)abstract
    • Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)(1/6) and (wing loading)(1/2) among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, Ue) of 138 species, ranging 0.01-10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of Ue in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in Ue. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in Ue. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading.
  •  
3.
  • Andersson, Marlene, et al. (författare)
  • Carbonic Anhydrase Generates CO2 and H+ That Drive Spider Silk Formation Via Opposite Effects on the Terminal Domains
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 12:8, s. e1001921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive beta-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO(2)) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.
  •  
4.
  •  
5.
  • Azim, Kasum, et al. (författare)
  • Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity
  • 2017
  • Ingår i: PLoS biology. - San Francisco, United States : Public Library of Science. - 1544-9173 .- 1545-7885. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.
  •  
6.
  • Bahrampour, Shahrzad, et al. (författare)
  • Brain expansion promoted by polycomb-mediated anterior enhancement of a neural stem cell proliferation program
  • 2019
  • Ingår i: PLoS biology. - : PUBLIC LIBRARY SCIENCE. - 1544-9173 .- 1545-7885. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • During central nervous system (CNS) development, genetic programs establish neural stem cells and drive both stem and daughter cell proliferation. However, the prominent anterior expansion of the CNS implies anterior-posterior (A-P) modulation of these programs. In Drosophila, a set of neural stem cell factors acts along the entire A-P axis to establish neural stem cells. Brain expansion results from enhanced stem and daughter cell proliferation, promoted by a Polycomb Group (PcG)-amp;gt;Homeobox (Hox) homeotic network. But how does PcG-amp;gt;Hox modulate neural-stem-cell-factor activity along the A-P axis? We find that the PcG-amp;gt;Hox network creates an A-P expression gradient of neural stem cell factors, thereby driving a gradient of proliferation. PcG mutants can be rescued by misexpression of the neural stem cell factors or by mutation of one single Hox gene. Hence, brain expansion results from anterior enhancement of core neural-stem-cell-factor expression, mediated by PcG repression of brain Hox expression.
  •  
7.
  • Bailey, Richard, et al. (författare)
  • Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 7:8, s. e1000179-
  • Tidskriftsartikel (refereegranskat)abstract
    • Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis,'' which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.
  •  
8.
  • Baumgardt, Magnus, et al. (författare)
  • Specification of neuronal identities by feedforward combinatorial coding.
  • 2007
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 5:2, s. 0295-0308
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal specification is often seen as a multistep process: earlier regulators confer broad neuronal identity and are followed by combinatorial codes specifying neuronal properties unique to specific subtypes. However, it is still unclear whether early regulators are re-deployed in subtype-specific combinatorial codes, and whether early patterning events act to restrict the developmental potential of postmitotic cells. Here, we use the differential peptidergic fate of two lineage-related peptidergic neurons in the Drosophila ventral nerve cord to show how, in a feedforward mechanism, earlier determinants become critical players in later combinatorial codes. Amongst the progeny of neuroblast 5-6 are two peptidergic neurons: one expresses FMRFamide and the other one expresses Nplp1 and the dopamine receptor DopR. We show the HLH gene collier functions at three different levels to progressively restrict neuronal identity in the 5-6 lineage. At the final step, collier is the critical combinatorial factor that differentiates two partially overlapping combinatorial codes that define FMRFamide versus Nplp1/DopR identity. Misexpression experiments reveal that both codes can activate neuropeptide gene expression in vast numbers of neurons. Despite their partially overlapping composition, we find that the codes are remarkably specific, with each code activating only the proper neuropeptide gene. These results indicate that a limited number of regulators may constitute a potent combinatorial code that dictates unique neuronal cell fate, and that such codes show a surprising disregard for many global instructive cues.
  •  
9.
  • Bazzi, Mohamad, et al. (författare)
  • Tooth morphology elucidates shark evolution across the end-Cretaceous mass extinction
  • 2021
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 19:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Sharks (Selachimorpha) are iconic marine predators that have survived multiple mass extinctions over geologic time. Their prolific fossil record is represented mainly by isolated shed teeth, which provide the basis for reconstructing deep time diversity changes affecting different selachimorph clades. By contrast, corresponding shifts in shark ecology, as measured through morphological disparity, have received comparatively limited analytical attention. Here, we use a geometric morphometric approach to comprehensively examine tooth morphologies in multiple shark lineages traversing the catastrophic end-Cretaceous mass extinction-this event terminated the Mesozoic Era 66 million years ago. Our results show that selachimorphs maintained virtually static levels of dental disparity in most of their constituent clades across the Cretaceous-Paleogene interval. Nevertheless, selective extinctions did impact apex predator species characterized by triangular blade-like teeth. This is particularly evident among lamniforms, which included the dominant Cretaceous anacoracids. Conversely, other groups, such as carcharhiniforms and orectolobiforms, experienced disparity modifications, while heterodontiforms, hexanchiforms, squaliforms, squatiniforms, and dagger synechodontiforms were not overtly affected. Finally, while some lamniform lineages disappeared, others underwent postextinction disparity increases, especially odontaspidids, which are typified by narrow-cusped teeth adapted for feeding on fishes. Notably, this increase coincides with the early Paleogene radiation of teleosts as a possible prey source, and the geographic relocation of disparity sampling "hotspots," perhaps indicating a regionally disjunct extinction recovery. Ultimately, our study reveals a complex morphological response to the end-Cretaceous mass extinction and highlights an event that influenced the evolution of modern sharks.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 170
Typ av publikation
tidskriftsartikel (168)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (167)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Andersson, Dan I. (4)
Thor, Stefan (4)
Hedenström, Anders (3)
Alenius, Mattias (3)
Wang, J. (2)
Zhao, Z. (2)
visa fler...
Kim, S. (2)
Sandberg, JK (2)
Bryceson, YT (2)
Schnabel, R. (2)
Dobson, Christopher ... (2)
Jönsson, Henrik (2)
Lindblad-Toh, Kersti ... (2)
Frisen, J (2)
Meletis, K (2)
Pan, J. (2)
McKay, S (2)
Guigo, Roderic (2)
Billker, Oliver (2)
Burki, Fabien (2)
Kolisko, Martin (2)
Kudryavtsev, Alexand ... (2)
Carninci, P (2)
Stairs, Courtney W (2)
Larsson, NG (2)
Wong, K (2)
Lee, D. (2)
Orešič, Matej, 1967- (2)
Hayashizaki, Y (2)
Alexeyenko, Andrey (2)
Gourdon, Pontus (2)
Tu, D (2)
Bäckman, Johan (2)
Alexeyenko, A (2)
Lenhard, B (2)
Miguel-Aliaga, Irene (2)
Kullander, Klas (2)
Jakobsson, Mattias (2)
Nicoloff, Hervé (2)
Roger, Andrew J (2)
Henriksson, Johan (2)
Neutze, Richard, 196 ... (2)
Råberg, Lars (2)
Lindahl, Erik (2)
Chapron, Guillaume (2)
de Groot, Bert L. (2)
Bahrampour, Shahrzad (2)
Sundin, Josefin (2)
Brorsson, Ann-Christ ... (2)
Lin, J. (2)
visa färre...
Lärosäte
Karolinska Institutet (51)
Uppsala universitet (39)
Lunds universitet (30)
Umeå universitet (20)
Sveriges Lantbruksuniversitet (17)
Stockholms universitet (14)
visa fler...
Linköpings universitet (14)
Göteborgs universitet (10)
Örebro universitet (4)
Naturhistoriska riksmuseet (3)
Kungliga Tekniska Högskolan (2)
Chalmers tekniska högskola (2)
Handelshögskolan i Stockholm (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (170)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (93)
Medicin och hälsovetenskap (34)
Lantbruksvetenskap (5)
Samhällsvetenskap (4)
Humaniora (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy