SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1743 8977 "

Sökning: L773:1743 8977

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barath, Stefan, et al. (författare)
  • Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions
  • 2010
  • Ingår i: Particle and Fibre Toxicology. - : BioMed Central. - 1743-8977. ; 7:1, s. 19-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions.OBJECTIVES: To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures.METHODS: In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 mug/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions.MEASUREMENTS AND MAIN RESULTS: Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05).CONCLUSION: Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds.
  •  
2.
  • Bolling, Anette Kocbach, et al. (författare)
  • Health effects of residential wood smoke particles : the importance of combustion conditions and physicochemical particle properties
  • 2009
  • Ingår i: Particle and Fibre Toxicology. - London : BioMed Central (BMC). - 1743-8977. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles.Outline: The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties.Conclusion: Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles.
  •  
3.
  • Löndahl, Jakob, et al. (författare)
  • Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease
  • 2012
  • Ingår i: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 9, s. 30-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution, mainly from combustion, is one of the leading global health risk factors. A susceptible group is the more than 200 million people worldwide suffering from chronic obstructive pulmonary disease (COPD). There are few data on lung deposition of airborne particles in patients with COPD and none for combustion particles. Objectives: To determine respiratory tract deposition of diesel combustion particles in patients with COPD during spontaneous breathing. Methods: Ten COPD patients and seven healthy subjects inhaled diesel exhaust particles generated during idling and transient driving in an exposure chamber. The respiratory tract deposition of the particles was measured in the size range 10-500 nm during spontaneous breathing. Results: The deposited dose rate increased with increasing severity of the disease. However, the deposition probability of the ultrafine combustion particles (< 100 nm) was decreased in COPD patients. The deposition probability was associated with both breathing parameters and lung function, but could be predicted only based on lung function. Conclusions: The higher deposited dose rate of inhaled air pollution particles in COPD patients may be one of the factors contributing to their increased vulnerability. The strong correlations between lung function and particle deposition, especially in the size range of 20-30 nm, suggest that altered particle deposition could be used as an indicator respiratory disease.
  •  
4.
  • Sehlstedt, Maria, 1979-, et al. (författare)
  • Antioxidant airway responses following experimental exposure to wood smoke in man
  • 2010
  • Ingår i: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 7, s. 21-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 +/- 22 mu g/m(3), and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results: Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions: Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure.
  •  
5.
  •  
6.
  • Bräuner, Elvira Vaclavik, et al. (författare)
  • Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals.
  • 2008
  • Ingår i: Particle and fibre toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Particulate air pollution is associated with increased risk of cardiovascular events although the involved mechanisms are poorly understood. The objective of the present study was to investigate the effects of controlled exposure to ambient air fine and ultrafine particles on microvascular function and biomarkers related to inflammation, haemostasis and lipid and protein oxidation. METHODS: Twenty-nine subjects participated in a randomized, two-factor crossover study with or without biking exercise for 180 minutes and with 24 hour exposure to particle rich (number concentrations, NC: 11600 +/- 5600 per cm3, mass concentrations: 13.8 +/- 7.4 mug/m3 and 10.5 +/- 4.8 mug/m3 for PM10-2.5 and PM2.5, respectively) or particle filtered (NC: 555 +/- 1053 per cm3) air collected above a busy street. Microvascular function was assessed non-invasively by measuring digital peripheral artery tone following arm ischemia. Biomarkers included haemoglobin, red blood cells, platelet count, coagulation factors, C-reactive protein, fibrinogen, interleukin-6, tumour necrosis factor alpha, lag time to copper-induced oxidation of plasma lipids and protein oxidation measured as 2-aminoadipic semialdehyde in plasma. RESULTS: No statistically significant differences were observed on microvascular function or the biomarkers after exposure to particle rich or particle filtered air. CONCLUSION: This study indicates that exposure to air pollution particles at outdoor concentrations is not associated with detectable systemic inflammation, lipid or protein oxidation, altered haemostasis or microvascular function in young healthy participants.
  •  
7.
  • Bølling, Anette Kocbach, et al. (författare)
  • Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines.
  • 2012
  • Ingår i: Particle and fibre toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in northern countries during the winter season. The overall aim of this study was therefore to investigate the cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS: WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION: The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
  •  
8.
  • Crüts, Björn, et al. (författare)
  • Exposure to diesel exhaust induces changes in EEG in human volunteers.
  • 2008
  • Ingår i: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 5, s. 4-
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Ambient particulate matter and nanoparticles have been shown to translocate to the brain, and potentially influence the central nervous system. No data are available whether this may lead to functional changes in the brain. METHODS: We exposed 10 human volunteers to dilute diesel exhaust (DE, 300 mug/m3) as a model for ambient PM exposure and filtered air for one hour using a double blind randomized crossover design. Brain activity was monitored during and for one hour following each exposure using quantitative electroencephalography (QEEG) at 8 different sites on the scalp. The frequency spectrum of the EEG signals was used to calculate the median power frequency (MPF) and specific frequency bands of the QEEG. RESULTS: Our data demonstrate a significant increase in MPF in response to DE in the frontal cortex within 30 min into exposure. The increase in MPF is primarily caused by an increase in fast wave activity (beta2) and continues to rise during the 1 hour post-exposure interval. CONCLUSION: This study is the first to show a functional effect of DE exposure in the human brain, indicating a general cortical stress response. Further studies are required to determine whether this effect is mediated by the nanoparticles in DE and to define the precise pathways involved.
  •  
9.
  •  
10.
  • Gerlofs-Nijland, ME, et al. (författare)
  • Effects of particulate matter on the pulmonary and vascular system: time course in spontaneously hypertensive rats.
  • 2005
  • Ingår i: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 24:2, s. 2-
  • Tidskriftsartikel (refereegranskat)abstract
    • This study was performed within the scope of two multi-center European Commission-funded projects (HEPMEAP and PAMCHAR) concerning source-composition-toxicity relationship for particulate matter (PM) sampled in Europe. The present study aimed to optimize the design for PM in vivo toxicity screening studies in terms of dose and time between a single exposure and the determination of the biological responses in a rat model mimicking human disease resulting in susceptibility to ambient PM. Dust in thoracic PM size-range (aerodynamic diameter <10 μm) was sampled nearby a road tunnel (RTD) using a high volume cascade impactor. Spontaneously hypertensive rats were exposed to urban dust collected in Ottawa, Canada (EHC-93 10 mg/kg of body weight; reference PM) or different RTD doses (0.3, 1, 3, 10 mg/kg of body weight) by intratracheal instillation. Necropsy was performed at 4, 24, or 48 hr after exposure.ResultsThe neutrophil numbers in bronchoalveolar lavage fluid increased tremendously after exposure to the highest RTD doses or EHC-93. Furthermore, PM exposure slightly affected blood coagulation since there was a small but significant increase in the plasma fibrinogen levels (factor 1.2). Pulmonary inflammation and oxidative stress as well as changes in blood coagulation factors and circulating blood cell populations were observed within the range of 3 to 10 mg PM/kg of body weight without significant pulmonary injury.ConclusionThe optimal dose for determining the toxicity ranking of ambient derived PM samples in spontaneously hypertensive rats is suggested to be between 3 and 10 mg PM/kg of body weight under the conditions used in the present study. At a lower dose only some inflammatory effects were detected, which will probably be too few to be able to discriminate between PM samples while a completely different response pattern was observed with the highest dose. In addition to the dose, a 24-hr interval from exposure to sacrifice seemed appropriate to assess the relative toxic potency of PM since the majority of the health effects were observed one day after PM exposure compared to the other times examined. The aforementioned considerations provide a good basis for conducting PM toxicity screening studies in spontaneously hypertensive rats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (39)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sandström, Thomas (11)
Blomberg, Anders (9)
Boman, Christoffer (9)
Löndahl, Jakob (7)
Westerholm, Roger (7)
Mills, Nicholas L. (6)
visa fler...
Sandström, Thomas, 1 ... (4)
Rissler, Jenny (4)
Pagels, Joakim (4)
Karlsson, Hanna L. (4)
Pourazar, Jamshid (4)
Mudway, Ian S (4)
Newby, David E (4)
Wollmer, Per (3)
Gudmundsson, Anders (3)
Swietlicki, Erik (3)
Blomberg, Anders, 19 ... (3)
Fadeel, Bengt (3)
Barregård, Lars, 194 ... (3)
Sällsten, Gerd, 1952 (3)
Loft, S. (3)
Nyström, Robin (3)
Barath, Stefan (3)
Törnqvist, Håkan (3)
Langrish, Jeremy P (3)
Tunér, Martin (2)
Kåredal, Monica (2)
Bergvall, Christoffe ... (2)
Albin, Maria (2)
Nielsen, Jörn (2)
Wolff, H (2)
Olin, Anna-Carin, 19 ... (2)
Wierzbicka, Aneta (2)
Kelly, Frank J. (2)
Xu, YiYi (2)
Upadhyay, S (2)
Strandberg, Bo (2)
Vogel, U. (2)
Moller, P. (2)
Pourazar, Jamshid, 1 ... (2)
Rankin, Gregory (2)
Bosson, Jenny A. (2)
Behndig, Annelie F., ... (2)
Odnevall Wallinder, ... (2)
Lucking, Andrew J (2)
Donaldson, Ken (2)
Sadiktsis, Ioannis, ... (2)
Schwarze, Per E (2)
Gren, Louise (2)
Skoglund, Sara (2)
visa färre...
Lärosäte
Umeå universitet (17)
Lunds universitet (12)
Karolinska Institutet (12)
Göteborgs universitet (9)
Stockholms universitet (7)
Kungliga Tekniska Högskolan (4)
visa fler...
Uppsala universitet (2)
RISE (2)
visa färre...
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Naturvetenskap (7)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy