SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2379 5042 "

Sökning: L773:2379 5042

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Astvaldsson, Asgeir, 1981-, et al. (författare)
  • Proximity Staining using Enzymatic Protein Tagging in Diplomonads
  • 2019
  • Ingår i: mSphere. - 2379-5042. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The diplomonads are a group of understudied eukaryotic flagellates whose most prominent member is the human pathogen Giardia intestinalis. Methods commonly used in other eukaryotic model systems often require special optimization in diplomonads due to the highly derived character of their cell biology. We have optimized a proximity labeling protocol using pea ascorbate peroxidase (APEX) as a reporter for transmission electron microscopy (TEM), to enable study of ultrastructural cellular details in diplomonads. Currently available TEM-compatible tags requires light-induced activation (1, 2) or are inactive in many cellular compartments (3) while ascorbate peroxidase has not been shown to have those limitations. Here we have optimized the in vivo activity of two versions of pea ascorbate peroxidase (APXW41F and APEX) using the diplomonad fish parasite Spironucleus salmonicida, a relative of G. intestinalis. We exploited the well-known peroxidase substrates, Amplex UltraRed and 3,3’-diaminobenzidine (DAB), to validate the activity of the two tags and argue that APEX is the most stable version to use in Spironucleus salmonicida. Next, we fused APEX to proteins with established localization to evaluate the activity of APEX in different cellular compartments of the diplomonad cell and used Amplex UltraRed as well as antibodies along with super-resolution microscopy to confirm the protein-APEX localization. The ultrastructural details of protein-APEX fusions were determined by TEM and we observed marker activity in all cellular compartments tested when using the DAB substrate. Finally, we show that the optimized conditions established for S. salmonicida can be used in the related diplomonad G. intestinalis.
  •  
2.
  • Aurass, Philipp, et al. (författare)
  • Identification of genes required for long-term survival of Legionella Pneumophila in water
  • 2023
  • Ingår i: mSphere. - Washington : American Society for Microbiology. - 2379-5042. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term survival of Legionella pneumophila in aquatic environments is thought to be important for facilitating epidemic outbreaks. Eliminating bacterial colonization in plumbing systems is the primary strategy that depletes this reservoir and prevents disease. To uncover L. pneumophila determinants facilitating survival in water, a Tn-seq strategy was used to identify survival-defective mutants during 50-day starvation in tap water at 42°C. The mutants with the most drastic survival defects carried insertions in electron transport chain genes, indicating that membrane energy charge and/or ATP synthesis requires the generation of a proton gradient by the respiratory chain to maintain survival in the presence of water stress. In addition, periplasmically localized proteins that are known (EnhC) or hypothesized (lpg1697) to stabilize the cell wall against turnover were essential for water survival. To test that the identified mutations disrupted water survival, candidate genes were knocked down by CRISPRi. The vast majority of knockdown strains with verified transcript depletion showed remarkably low viability after 50-day incubations. To demonstrate that maintenance of cell wall integrity was an important survival determinant, a deletion mutation in lpg1697, in a gene encoding a predicted l,d-transpeptidase domain, was analyzed. The loss of this gene resulted in increased osmolar sensitivity and carbenicillin hypersensitivity relative to the wild type, as predicted for loss of an l,d-transpeptidase. These results indicate that the L. pneumophila envelope has been evolutionarily selected to allow survival under conditions in which the bacteria are subjected to long-term exposure to starvation and low osmolar conditions. IMPORTANCE Water is the primary vector for transmission of L. pneumophila to humans, and the pathogen is adapted to persist in this environment for extended periods of time. Preventing survival of L. pneumophila in water is therefore critical for prevention of Legionnaires' disease. We analyzed dense transposon mutation pools for strains with severe survival defects during a 50-day water incubation at 42°C. By tracking the associated transposon insertion sites in the genome, we defined a distinct essential gene set for water survival and demonstrate that a predicted peptidoglycan cross-linking enzyme, lpg1697, and components of the electron transport chain are required to ensure survival of the pathogen. Our results indicate that select characteristics of the cell wall and components of the respiratory chain of L. pneumophila are primary evolutionary targets being shaped to promote its survival in water.
  •  
3.
  • Baig, Sharmin, et al. (författare)
  • Evolution and Population Dynamics of Clonal Complex 152 Community-Associated Methicillin-Resistant Staphylococcus aureus
  • 2020
  • Ingår i: mSphere. - : AMER SOC MICROBIOLOGY. - 2379-5042. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the late 1990s, changes in the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) were recognized with the emergence of community-associated MRSA (CA-MRSA). CA-MRSA belonging to clonal complex 152 (CC152), carrying the small staphylococcal cassette chromosome mec (SCCmec) type V and encoding the Panton-Valentine leukocidin (PVL), has been observed in Europe. The aim of this study was to investigate its origin, evolution, and dissemination. Whole-genome sequencing was performed on a global collection of 149 CC152 isolates spanning 20 years (93 methicillin-susceptible S. aureus [MSSA] and 56 MRSA isolates). Core genome phylogeny, Bayesian inference, in silico resistance analyses, and genomic characterization were applied. Phylogenetic analysis revealed two major distinct clades, one dominated by MSSA and the other populated only by MRSA. The MSSA isolates were predominately from sub-Saharan Africa, whereas MRSA was almost exclusively from Europe. The European MRSA isolates all harbored an SCCmec type V (5C2&5) element, whereas other SCCmec elements were sporadically detected in MRSA from the otherwise MSSA-dominated clade, including SCCmec types IV (2B), V (5C2), and XIII (9A). In total, 93% of the studied CC152 isolates were PVL positive. Bayesian coalescent inference suggests an emergence of the European CC152-MRSA in the 1990s, while the CC152 lineage dates back to the 1970s. The CA-MRSA CC152 clone mimics the European CC80 CA-MRSA lineage by its emergence from a PVL-positive MSSA ancestor from North Africa or Europe. The CC152 lineage has acquired SCCmec several times, but acquisition of SCCmec type V (5C2&5) seems associated with expansion of MRSA CC152 in Europe. IMPORTANCE Understanding the evolution of CA-MRSA is important in light of the increasing importance of this reservoir in the dissemination of MRSA. Here, we highlight the story of the CA-MRSA CC152 lineage using whole-genome sequencing on an international collection of CC152. We show that the evolution of this lineage is novel and that antibiotic usage may have the potential to select for the phage-encoded Panton-Valentine leukocidin. The diversity of the strains correlated highly to geography, with higher level of resistance observed among the European MRSA isolates. The mobility of the SCCmec element is mandatory for the emergence of novel MRSA lineages, and we show here distinct acquisitions, one of which is linked to the successful clone found throughout Europe today.
  •  
4.
  • Begum, Y. A., et al. (författare)
  • In situ Analyses Directly in Diarrheal Stool Reveal Large Variations in Bacterial Load and Active Toxin Expression o Enterotoxigenic Escherichia coli and Vibrio cholerae
  • 2018
  • Ingår i: Msphere. - 2379-5042. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterial pathogens enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae are major causes of diarrhea. ETEC causes diarrhea by production of the heat-labile toxin (LT) and heat-stable toxins (STh and STp), while V. cholerae produces cholera toxin (CT). In this study, we determined the occurrence and bacterial doses of the two pathogens and their respective toxin expression levels directly in liquid diarrheal stools of patients in Dhaka, Bangladesh. By quantitative culture and real-time quantitative PCR (qPCR) detection of the toxin genes, the two pathogens were found to coexist in several of the patients, at concentrations between 10(2) and 10(8) bacterial gene copies per ml. Even in culture-negative samples, gene copy numbers of 10(2) to 10(4) of either ETEC or V. cholerae toxin genes were detected by qPCR. RNA was extracted directly from stool, and gene expression levels, quantified by reverse transcriptase qPCR (RT-qPCR), of the genes encoding CT, LT, STh, and STp showed expression of toxin genes. Toxin enzyme-linked immunosorbent assay (ELISA) confirmed active toxin secretion directly in the liquid diarrhea. Analysis of ETEC isolates by multiplex PCR, dot blot analysis, and genome sequencing suggested that there are genetic ETEC profiles that are more commonly found as dominating single pathogens and others that are coinfectants with lower bacterial loads. The ETEC genomes, including assembled genomes of dominating ETEC isolates expressing LT/STh/CS5/CS6 and LT/CS7, are provided. In addition, this study highlights an emerging important ETEC strain expressing LT/STp and the novel colonization factor CS27b. These findings have implications for investigations of pathogenesis as well as for vaccine development.& para;& para;IMPORTANCE The cause of diarrhea! disease is usually determined by screening for several microorganisms by various methods, and sole detection is used to assign the agent as the cause of disease. However, it has become increasingly clear that many infections are caused by coinfections with several pathogens and that the dose of the infecting pathogen is important. We quantified the absolute numbers of enterotoxigenic E. coil (ETEC) and Vibrio cholerae directly in diarrheal fluid. We noted several events where both pathogens were found but also a large dose dependency. In three samples, we found ETEC as the only pathogen sought for. These isolates belonged to globally distributed ETEC clones and were the dominating species in stool with active toxin expression. This suggests that certain superior virulent ETEC lineages are able to outcompete the gut microbiota and be the sole cause of disease and hence need to be specifically monitored.
  •  
5.
  • Berggren, Sofia, et al. (författare)
  • ProQ-dependent activation of Salmonella virulence genes mediated by post-transcriptional control of PhoP synthesis
  • 2024
  • Ingår i: mSphere. - : American Society for Microbiology. - 2379-5042. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrointestinal disease caused by Salmonella enterica is associated with the pathogen's ability to replicate within epithelial cells and macrophages. Upon host cell entry, the bacteria express a type-three secretion system encoded within Salmonella pathogenicity island 2, through which host-manipulating effector proteins are secreted to establish a stable intracellular niche. Transcription of this intracellular virulence program is activated by the PhoPQ two-component system that senses the low pH and the reduced magnesium concentration of host cell vacuoles. In addition to transcriptional control, Salmonella commonly employ RNA-binding proteins (RBPs) and small regulatory RNAs (sRNAs) to regulate gene expression at the post-transcriptional level. ProQ is a globally acting RBP in Salmonella that promotes expression of the intracellular virulence program, but its RNA repertoire has previously been characterized only under standard laboratory growth conditions. Here, we provide a high-resolution ProQ interactome during conditions mimicking the environment of the Salmonella-containing vacuole (SCV), revealing hundreds of previously unknown ProQ binding sites in sRNAs and mRNA 3 ' UTRs. ProQ positively affected both the levels and the stability of many sRNA ligands, some of which were previously shown to associate with the well-studied and infection-relevant RBP Hfq. We further show that ProQ activates the expression of PhoP at the post-transcriptional level, which, in turn, leads to upregulation of the intracellular virulence program.
  •  
6.
  • Bindal, Gargi, et al. (författare)
  • Type I-E CRISPR-Cas System as a Defense System in Saccharomyces cerevisiae
  • 2022
  • Ingår i: mSphere. - : American Society for Microbiology. - 2379-5042. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Defense against viruses and other mobile genetic elements (MGEs) is important in many organisms. The CRISPR-Cas systems found in bacteria and archaea constitute adaptive immune systems that can acquire the ability to target previously unrecognized MGEs. No CRISPR-Cas system is found to occur naturally in eukaryotic cells, but here, we demonstrate interference by a type I-E CRISPR-Cas system from Escherichia coli introduced in Saccharomyces cerevisiae. The designed CRISPR arrays are expressed and processed properly in S. cerevisiae. Targeted plasmids display reduced transformation efficiency, indicative of DNA cleavage. IMPORTANCE Genetic inactivation of viruses and other MGEs is an important tool with application in both research and therapy. Gene editing using, e.g., Cas9-based systems, can be used to inactivate MGEs in eukaryotes by introducing specific mutations. However, type I-E systems processively degrade the target which allows for inactivation without detailed knowledge of gene function. A reconstituted CRISPR-Cas system in S. cerevisiae can also function as a basic research platform for testing the role of various factors in the interference process. Genetic inactivation of viruses and other MGEs is an important tool with application in both research and therapy. Gene editing using, e.g., Cas9-based systems, can be used to inactivate MGEs in eukaryotes by introducing specific mutations.
  •  
7.
  • Blanco, Paula, et al. (författare)
  • Antimicrobial Peptide Exposure Selects for Resistant and Fit Stenotrophomonas maltophilia Mutants That Show Cross-Resistance to Antibiotics
  • 2020
  • Ingår i: mSphere. - : AMER SOC MICROBIOLOGY. - 2379-5042. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial peptides (AMPs) are essential components of the innate immune system and have been proposed as promising therapeutic agents against drug-resistant microbes. AMPs possess a rapid bactericidal mode of action and can interact with different targets, but bacteria can also avoid their effect through a variety of resistance mechanisms. Apart from hampering treatment by the AMP itself, or that by other antibiotics in the case of cross-resistance, AMP resistance might also confer cross-resistance to innate human peptides and impair the anti-infective capability of the human host. A better understanding of how resistance to AMPs is acquired and the genetic mechanisms involved is needed before using these compounds as therapeutic agents. Using experimental evolution and whole-genome sequencing, we determined the genetic causes and the effect of acquired de novo resistance to three different AMPs in the opportunistic pathogen Stenotrophomonas maltophilia, a bacterium that is intrinsically resistant to a wide range of antibiotics. Our results show that AMP exposure selects for high-level resistance, generally without any reduction in bacterial fitness, conferred by mutations in different genes encoding enzymes, transporters, transcriptional regulators, and other functions. Cross-resistance to AMPs and to other antibiotic classes not used for selection, as well as collateral sensitivity, was observed for many of the evolved populations. The relative ease by which high-level AMP resistance is acquired, combined with the occurrence of cross-resistance to conventional antibiotics and the maintained bacterial fitness of the analyzed mutants, highlights the need for careful studies of S. maltophilia resistance evolution to clinically valuable AMPs. IMPORTANCE Stenotrophomonas maltophilia is an increasingly relevant multidrug-resistant (MDR) bacterium found, for example, in people with cystic fibrosis and associated with other respiratory infections and underlying pathologies. The infections caused by this nosocomial pathogen are difficult to treat due to the intrinsic resistance of this bacterium against a broad number of antibiotics. Therefore, new treatment options are needed, and considering the growing interest in using AMPs as alternative therapeutic compounds and the restricted number of antibiotics active against S. maltophilia, we addressed the potential for development of AMP resistance, the genetic mechanisms involved, and the physiological effects that acquisition of AMP resistance has on this opportunistic pathogen.
  •  
8.
  •  
9.
  • Bortz, Robert H., et al. (författare)
  • Single-Dilution COVID-19 Antibody Test with Qualitative and Quantitative Readouts
  • 2021
  • Ingår i: mSphere. - : American Society for Microbiology. - 2379-5042. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to place an immense burden on societies and health care systems. A key component of COVID-19 control efforts is serological testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior SARS-CoV-2 infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this sensitive test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test make it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.IMPORTANCE Serological surveillance has become an important public health tool during the COVID-19 pandemic. Detection of protective antibodies and seroconversion after SARS-CoV-2 infection or vaccination can help guide patient care plans and public health policies. Serology tests can detect antibodies against past infections; consequently, they can help overcome the shortcomings of molecular tests, which can detect only active infections. This is important, especially when considering that many COVID-19 patients are asymptomatic. In this study, we describe an enzyme-linked immunosorbent assay (ELISA)-based qualitative and quantitative serology test developed to measure IgG and IgA antibodies against the SARS-CoV-2 spike glycoprotein. The test can be deployed using commonly available laboratory reagents and equipment and displays high specificity and sensitivity. Furthermore, we demonstrate that IgG titers in patient samples can be estimated from a single measurement, enabling the assay's use in high-throughput clinical environments.
  •  
10.
  • Broman, Elias, 1985-, et al. (författare)
  • Cyanophage Diversity and Community Structure in Dead Zone Sediments
  • 2021
  • Ingår i: mSphere. - : American Society for Microbiology. - 2379-5042. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Up to 20% of prokaryotic organisms in the oceans are estimated to die every day due to viral infection and lysis. Viruses can therefore alter microbial diversity, community structure, and biogeochemical processes driven by these organisms. Cyanophages are viruses that infect and lyse cyanobacterial cells, adding bioavailable carbon and nutrients into the environment. Cyanobacteria are photosynthesizing bacteria, with some species capable of N-2 fixation, which are known to form large blooms as well as resistant resting cells known as akinetes. Here, we investigated cyanophage diversity and community structure plus cyanobacteria in dead zone sediments. We sampled surface sediments and sequenced DNA and RNA, along an oxygen gradient-representing oxic, hypoxic, and anoxic conditions-in one of the world's largest dead zones located in the Baltic Sea. Cyanophages were detected at all stations and, based on partial genome contigs, had a higher alpha diversity and different beta diversity in the hypoxic-anoxic sediments, suggesting that cyanobacteria in dead zone sediments and/or environmental conditions select for specific cyanophages. Some of these cyanophages can infect cyanobacteria with potential consequences for gene expression related to their photosystem and phosphate regulation. Top cyanobacterial genera detected in the anoxic sediment included Dolichospermum/Anabaena, Synechococcus, and Cyanobium. RNA transcripts classified to cyanobacteria were associated with numerous pathways, including anaerobic carbon metabolism and N-2 fixation. Cyanobacterial blooms are known to fuel oxygen-depleted ecosystems with phosphorus (so-called internal loading), and our cyanophage data indicate the potential for viral lysis of cyanobacteria which might explain the high nutrient turnover in these environments. IMPORTANCE Cyanophages are viruses that target cyanobacteria and directly control their abundance via viral lysis. Cyanobacteria are known to cause large blooms in water bodies, substantially contributing to oxygen depletion in bottom waters resulting in areas called dead zones. Our knowledge of cyanophages in dead zones is very scarce, and so far, no studies have assembled partial cyanophage genomes and investigated their associated cyanobacteria in these dark and anoxic sediments. Here, we present the first study using DNA and RNA sequencing to investigate in situ diversity of cyanophages and cyanobacteria in dead zones. Our study shows that dead zone sediments contain different cyanophages compared to oxic sediments and suggest that these viruses are able to affect cyanobacterial photosystem and phosphate regulation. Furthermore, cyanophage-controlled lysis of cyanobacteria might also increase the turnover of carbon, phosphorus, and nitrogen in these oxygen-free environments at the bottom of the sea.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (31)
Typ av innehåll
refereegranskat (31)
Författare/redaktör
Nascimento, Francisc ... (2)
Engstrand, L (1)
Farewell, Anne, 1961 (1)
Kristiansson, Erik, ... (1)
Wurzbacher, Christia ... (1)
Jiang, R. (1)
visa fler...
Sun, L. (1)
Strauss, J. (1)
Nielsen, Jens B, 196 ... (1)
Strålin, Kristoffer (1)
Engstrand, Lars (1)
Ahlm, Clas, 1956- (1)
Riesbeck, Kristian (1)
Sid Ahmed, Mazen, 19 ... (1)
Seifert, M (1)
Cava, Felipe (1)
Bertilsson, Stefan (1)
Absalon, S (1)
Blomqvist, K (1)
Rudlaff, RM (1)
Dvorin, JD (1)
Kerkhoven, Eduard, 1 ... (1)
Murphy, R (1)
Andersson, Dan I. (1)
Larsson, D. G. Joaki ... (1)
Schuppe-Koistinen, I (1)
Ahl, Jonas (1)
Joffre, E (1)
Littorin, Nils (1)
Lundgren, Magnus, 19 ... (1)
Forsell, Mattias N. ... (1)
Warringer, Jonas, 19 ... (1)
Li, Jian (1)
Begum, Y. A. (1)
Qadri, F. (1)
Sjöling, Åsa, 1968 (1)
Hugerth, Luisa W. (1)
Bergvall, Christoffe ... (1)
Lilje, Berit (1)
Johannesen, Thor Bec ... (1)
Baig, Sharmin (1)
Al-Maslamani, Muna (1)
Unemo, Magnus, 1970- (1)
Palm, Martin (1)
Bonaglia, Stefano, 1 ... (1)
ter Beek, Josy (1)
Hugerth, LW (1)
Fransson, E. (1)
Shafer, William M. (1)
Schuppe-Koistinen, I ... (1)
visa färre...
Lärosäte
Uppsala universitet (10)
Karolinska Institutet (10)
Göteborgs universitet (4)
Umeå universitet (3)
Örebro universitet (3)
Kungliga Tekniska Högskolan (2)
visa fler...
Stockholms universitet (2)
Chalmers tekniska högskola (2)
Linköpings universitet (1)
Lunds universitet (1)
Malmö universitet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Medicin och hälsovetenskap (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy