SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2624 6511 "

Sökning: L773:2624 6511

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Colding, Johan, 1958-, et al. (författare)
  • Applying a Systems Perspective on the Notion of the Smart City
  • 2020
  • Ingår i: Smart Cities. - : MDPI AG. - 2624-6511. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on the need for a widened definition of the notion of technology within the smart city discourse, with a particular focus on the “built environment”. The first part of the paper describes how current tendencies in urban design and architecture are inclined to prioritize high tech-solutions at the expense of low-tech functionalities and omits that information and communication technology (ICT) contrasts the art of building cities as an adaptable and habitually smart technology in itself. It continues with an elaboration on the need for expanding the limits of system boundaries for a better understanding of the energy and material telecouplings that are linked to ICT solutions and account for some perils inherent in smart technologies, such as rebound effects and the difficulty of measuring the environmental impacts of ICT solutions on a city level. The second part of the paper highlights how low-tech technologies and nature-based solutions can make cities smarter, representing a new technology portfolio in national and international policies for safeguarding biodiversity and the delivery of a range of ecosystem services, promoting the necessary climate-change adaption that cities need to prioritize to confer resilience.
  •  
2.
  • Colding, Johan, et al. (författare)
  • Wicked Problems of Smart Cities
  • 2019
  • Ingår i: Smart Cities. - : MDPI. - 2624-6511. ; 2:4, s. 512-521
  • Tidskriftsartikel (refereegranskat)abstract
    • It is often uncritically assumed that, when digital technologies are integrated into the operation of city functions, they inevitably contribute to sustainable urban development. Such a notion rests largely on the belief that Information and Communication Technology (ICT) solutions pave the way for more democratic forms of planning, and that ‘smart’ technological devices result in a range of environmental benefits, e.g., energy efficiency and the mitigation of global warming. Drawing on the scientific literature that deals with ‘smart cities’, we here elaborate on how both propositions fail to consider drawbacks that could be characterized as ‘wicked’, i.e., problems that lack simplistic solutions and straightforward planning responses, and which often come about as ‘management surprises’, as a byproduct of achieving sustainability. We here deal with problems related to public choice constraints, ‘non-choice default technologies’ and the costs of automation for human learning and resilience. To avoid undemocratic forms of planning and too strong a dependence on non-choice default technologies, e.g., smart phones, we recommend that planners and policy makers safeguard redundancy in public-choice options by maintaining a wide range of alternative choices, including analog ones. Resilience thinking could help planners deal more effectively with the ‘wickedness’ of an increasingly hyper-connected society.
  •  
3.
  • Delsing, Jerker, 1957- (författare)
  • Smart City Solution Engineering
  • 2021
  • Ingår i: SMART CITIES. - : MDPI. - 2624-6511. ; 4:2, s. 643-661
  • Tidskriftsartikel (refereegranskat)abstract
    • Many smart city applications have been proposed and demonstrated over the years; however, moving to large-scale deployment is still scarce. A contributing factor to this scarcity is the lack of well-established engineering methodologies for large-scale smart city applications. This paper addresses engineering methodologies and tools for large-scale smart city application engineering, implementation, deployment, and evolution. A model-based engineering approach based on IoT, SOA, and SysML is proposed and applied to a smart streetlight application. Engineering considerations for streetlight area enlargement and updated technology generations with additional capabilities are discussed. The proposed model-based engineering approach provides considerable scaling simplifications and opportunities for considerable savings on engineering costs. The model-based engineering approach also provides good documentation that enables technology evolution specifications that support both maintenance and emerging behaviours.
  •  
4.
  • Englund, Cristofer, 1977-, et al. (författare)
  • AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control
  • 2021
  • Ingår i: Smart Cities. - Basel : MDPI. - 2624-6511. ; 4:2, s. 783-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Smart Cities and Communities (SCC) constitute a new paradigm in urban development. SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with internet of things enables data collection and with the help of artificial intelligence (AI) situation awareness can be obtained to feed the SCC actors with enriched knowledge. This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control. Perception, Smart Traffic Control and Driver Modelling are described along with open research challenges and standardization to help introduce advanced driver assistance systems and automated vehicle functionality in traffic. To fully realize the potential of SCC, to create a holistic view on a city level, the availability of data from different stakeholders is need. Further, though AI technologies provide accurate predictions and classifications there is an ambiguity regarding the correctness of their outputs. This can make it difficult for the human operator to trust the system. Today there are no methods that can be used to match function requirements with the level of detail in data annotation in order to train an accurate model. Another challenge related to trust is explainability, while the models have difficulties explaining how they come to a certain conclusions it is difficult for humans to trust it. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
5.
  • Osman, Ahmed M. Shahat, et al. (författare)
  • Smart Cities and Big Data Analytics: A Data-Driven Decision-Making Use Case
  • 2021
  • Ingår i: Smart Cities. - Basel, Switzerland : MDPI. - 2624-6511 .- 2624-6511. ; 4:1, s. 286-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Interest in smart cities (SCs) and big data analytics (BDA) has increased in recent years, revealing the bond between the two fields. An SC is characterized as a complex system of systems involving various stakeholders, from planners to citizens. Within the context of SCs, BDA offers potential as a data-driven decision-making enabler. Although there are abundant articles in the literature addressing BDA as a decision-making enabler in SCs, mainstream research addressing BDA and SCs focuses on either the technical aspects or smartening specific SC domains. A small fraction of these articles addresses the proposition of developing domain-independent BDA frameworks. This paper aims to answer the following research question: how can BDA be used as a data-driven decision-making enabler in SCs? Answering this requires us to also address the traits of domain-independent BDA frameworks in the SC context and the practical considerations in implementing a BDA framework for SCs' decision-making. This paper's main contribution is providing influential design considerations for BDA frameworks based on empirical foundations. These foundations are concluded through a use case of applying a BDA framework in an SC's healthcare setting. The results reveal the ability of the BDA framework to support data-driven decision making in an SC.
  •  
6.
  • Colding, Johan, 1958-, et al. (författare)
  • Smart Cities for All? Bridging Digital Divides for Socially Sustainable and Inclusive Cities
  • 2024
  • Ingår i: Smart Cities. - : MDPI. - 2624-6511. ; 7:3, s. 1044-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper aims to emphasize the need for enhancing inclusivity and accessibility within smart-city societies. It represents the first attempt to apply Amartya Sen’s capability approach by exploring the implications of digital divides for promoting inclusive and climate-friendly cities that prioritize well-being, equity, and societal participation. Sen’s framework recognizes individual variations in converting resources into valuable ‘functionings’, and herein emphasizes the importance of aligning personal, social, and environmental conversion factors for individuals to fully navigate, participate in, and enjoy the benefits provided by smart cities. Adopting the capability approach and employing a cross-disciplinary analysis of the scientific literature, the primary objective is to broaden understanding of how to improve inclusivity and accessibility within smart-city societies, with a specific focus on marginalized community members facing first- and second-level digital divides. This paper underscores the importance of adopting a systemic perspective on climate-smart city navigation and stresses the importance of establishing a unified governing body responsible for monitoring, evaluating, and enhancing smart-city functionality. The paper concludes by summarizing some policy recommendations to boost social inclusion and address climate change in smart cities, such as creating capability-enhancing institutions, safeguarding redundancy in public-choice options, empowering citizens, and leveraging academic knowledge in smart-city policy formulation.
  •  
7.
  • Shahbazi, Zeinab, 1993-, et al. (författare)
  • Enhancing Energy Efficiency in Connected Vehicles for Traffic Flow Optimization
  • 2023
  • Ingår i: Smart Cities. - Basel : MDPI. - 2624-6511. ; 6:5, s. 2574-2592
  • Tidskriftsartikel (refereegranskat)abstract
    • In urban settings, the prevalence of traffic lights often leads to fluctuations in traffic patterns and increased energy utilization among vehicles. Recognizing this challenge, this research addresses the adverse effects of traffic lights on the energy efficiency of electric vehicles (EVs) through the introduction of a Multi-Intersections-Based Eco-Approach and Departure strategy (M-EAD). This innovative strategy is designed to enhance various aspects of urban mobility, including vehicle energy efficiency, traffic flow optimization, and battery longevity, all while ensuring a satisfactory driving experience. The M-EAD strategy unfolds in two distinct stages: First, it optimizes eco-friendly green signal windows at traffic lights, with a primary focus on minimizing travel delays by solving the shortest path problem. Subsequently, it employs a receding horizon framework and leverages an iterative dynamic programming algorithm to refine speed trajectories. The overarching objective is to curtail energy consumption and reduce battery wear by identifying the optimal speed trajectory for EVs in urban environments. Furthermore, the research substantiates the real-world efficacy of this approach through on-road vehicle tests, attesting to its viability and practicality in actual road scenarios. In the proposed case, the simulation results showcase notable achievements, with energy consumption reduced by 0.92% and battery wear minimized to a mere 0.0017%. This research, driven by the pressing issue of urban traffic energy efficiency, not only presents a solution in the form of the M-EAD strategy but also contributes to the fields of sustainable urban mobility and EV performance optimization. By tackling the challenges posed by traffic lights, this work offers valuable insights and practical implications for improving the sustainability and efficiency of urban transportation systems. © 2023 by the authors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy