SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9783030811853 OR L773:9783030811860 "

Sökning: L773:9783030811853 OR L773:9783030811860

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ketzer, João Marcelo, et al. (författare)
  • Gas Hydrate Systems on the Brazilian Continental Margin
  • 2022
  • Ingår i: World Atlas of Submarine Gas Hydrates in Continental Margins. - Cham : Springer. - 9783030811853 - 9783030811860 ; , s. 343-352
  • Bokkapitel (refereegranskat)abstract
    • The existence of gas hydrate systems along Brazil’s vast continental margin has been known since the 1980s, based on observations of bottom simulating reflectors (BSRs) in two large shelf-slope depocenters: (1) the Amazon deep-sea fan in the Foz do Amazonas Basin and (2) Rio Grande Cone in Pelotas Basin. These depocenters are both undergoing gravitational collapse above deep detachment surfaces, resulting in upslope extensional and downslope compressional domains. The BSR is discontinuous across the Amazon deep-sea fan, mainly observed at water depths of 600–2800 m and at anticlines within an upper slope thrust-fold belt related to the compressional domain of the fan. Conversely, a fairly continuous BSR extends across Rio Grande Cone at water depths of 520–3500 m, within both extensional and compressional domains. Interestingly, the well-defined BSR that spans Rio Grande Cone rises to meet the seafloor at water depths of 515–520 m, forming an unusual ‘BSR outcrop’. This phenomenon has been observed previously in only a few locations worldwide. Gas hydrates have been recovered within piston cores taken from seafloor seeps in both depocenters, and analyses reveal that gas is dominated by methane of microbial origin.
  •  
2.
  • Praeg, Daniel, et al. (författare)
  • A Gas Hydrate System of Heterogeneous Character in the Nile Deep-Sea Fan
  • 2022
  • Ingår i: World Atlas of Submarine Gas Hydrates in Continental Margins. - Cham : Springer. - 9783030811853 - 9783030811860 ; , s. 437-447
  • Bokkapitel (refereegranskat)abstract
    • Large deep-sea fans are useful settings to study gas hydrate systems, the rapid burial of organic-rich sediment driving linked processes of gas generation, fluid expulsion and syn-sedimentary tectonism. The Nile deep-sea fan (100,000 km2) is a collapsing Late Cenozoic depocentre that is both a hydrocarbon province and an area of widespread seafloor fluid seepage. Evidence for gas hydrates has been reported in this area, but remains poorly documented. Available seismic and well data are used together with information on seafloor features to characterise a deep-water (1500–2700 m) gas hydrate system in the central Nile fan. The system is in part expressed as a bottom simulating reflection (BSR) discontinuously observed across a relatively small area (6000 km2), both cross-cutting the stratified fill of fault-bound slope basins, and upslope of the basins within thick unstratified mass transport deposits. West of the BSR area, log data from two wells 45 km apart indicate the presence of gas hydrates in intervals up to 75 m thick near the base of the stability zone. Gas hydrates are also likely to be present near the seafloor within hundreds of pockmark-like mounds that record gas venting through the stability zone, most observed west of the BSR area. The central Nile fan thus contains a gas hydrate system expressed as two areas of comparable size, one with a discontinuous BSR but few seafloor gas vents, another lacking a BSR but with downhole evidence of gas hydrates and abundant gas venting. This heterogenous character is suggested to reflect spatial variations in fluid expulsion from the Nile fan, which can inhibit BSR formation while favouring gas hydrate accumulation over wide areas. This possibility has implications for other large deep-sea fans, many of which have restricted BSRs but may contain more extensive gas hydrate systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy