SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Štruc Vitomir) "

Sökning: WFRF:(Štruc Vitomir)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Emersic, Ziga, et al. (författare)
  • Convolutional encoder-decoder networks for pixel-wise ear detection and segmentation
  • 2018
  • Ingår i: IET Biometrics. - : INST ENGINEERING TECHNOLOGY-IET. - 2047-4938 .- 2047-4946. ; 7:3, s. 175-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Object detection and segmentation represents the basis for many tasks in computer and machine vision. In biometric recognition systems the detection of the region-of-interest (ROI) is one of the most crucial steps in the processing pipeline, significantly impacting the performance of the entire recognition system. Existing approaches to ear detection, are commonly susceptible to the presence of severe occlusions, ear accessories or variable illumination conditions and often deteriorate in their performance if applied on ear images captured in unconstrained settings. To address these shortcomings, we present a novel ear detection technique based on convolutional encoder-decoder networks (CEDs). We formulate the problem of ear detection as a two-class segmentation problem and design and train a CED-network architecture to distinguish between image-pixels belonging to the ear and the non-ear class. Unlike competing techniques, our approach does not simply return a bounding box around the detected ear, but provides detailed, pixel-wise information about the location of the ears in the image. Experiments on a dataset gathered from the web (a.k.a. in the wild) show that the proposed technique ensures good detection results in the presence of various covariate factors and significantly outperforms competing methods from the literature.
  •  
2.
  • Kristan, Matej, et al. (författare)
  • The Sixth Visual Object Tracking VOT2018 Challenge Results
  • 2019
  • Ingår i: Computer Vision – ECCV 2018 Workshops. - Cham : Springer Publishing Company. - 9783030110086 - 9783030110093 ; , s. 3-53
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
  •  
3.
  • Rosberg, Felix, 1995- (författare)
  • Anonymizing Faces without Destroying Information
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Anonymization is a broad term. Meaning that personal data, or rather data that identifies a person, is redacted or obscured. In the context of video and image data, the most palpable information is the face. Faces barely change compared to other aspect of a person, such as cloths, and we as people already have a strong sense of recognizing faces. Computers are also adroit at recognizing faces, with facial recognition models being exceptionally powerful at identifying and comparing faces. Therefore it is generally considered important to obscure the faces in video and image when aiming for keeping it anonymized. Traditionally this is simply done through blurring or masking. But this de- stroys useful information such as eye gaze, pose, expression and the fact that it is a face. This is an especial issue, as today our society is data-driven in many aspects. One obvious such aspect is autonomous driving and driver monitoring, where necessary algorithms such as object-detectors rely on deep learning to function. Due to the data hunger of deep learning in conjunction with society’s call for privacy and integrity through regulations such as the General Data Protection Regularization (GDPR), anonymization that preserve useful information becomes important.This Thesis investigates the potential and possible limitation of anonymizing faces without destroying the aforementioned useful information. The base approach to achieve this is through face swapping and face manipulation, where the current research focus on changing the face (or identity) while keeping the original attribute information. All while being incorporated and consistent in an image and/or video. Specifically, will this Thesis demonstrate how target-oriented and subject-agnostic face swapping methodologies can be utilized for realistic anonymization that preserves attributes. Thru this, this Thesis points out several approaches that is: 1) controllable, meaning the proposed models do not naively changes the identity. Meaning that what kind of change of identity and magnitude is adjustable, thus also tunable to guarantee anonymization. 2) subject-agnostic, meaning that the models can handle any identity. 3) fast, meaning that the models is able to run efficiently. Thus having the potential of running in real-time. The end product consist of an anonymizer that achieved state-of-the-art performance on identity transfer, pose retention and expression retention while providing a realism.Apart of identity manipulation, the Thesis demonstrate potential security issues. Specifically reconstruction attacks, where a bad-actor model learns convolutional traces/patterns in the anonymized images in such a way that it is able to completely reconstruct the original identity. The bad-actor networks is able to do this with simple black-box access of the anonymization model by constructing a pair-wise dataset of unanonymized and anonymized faces. To alleviate this issue, different defense measures that disrupts the traces in the anonymized image was investigated. The main take away from this, is that naively using what qualitatively looks convincing of hiding an identity is not necessary the case at all. Making robust quantitative evaluations important.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy