SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ammerpohl Ole) "

Sökning: WFRF:(Ammerpohl Ole)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergmann, Anke K., et al. (författare)
  • DNA methylation profiling of pediatric B-cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites
  • 2017
  • Ingår i: Pediatric Blood & Cancer. - : Wiley. - 1545-5009 .- 1545-5017. ; 64:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Deregulation of the epigenome is an important pathogenetic mechanism in acute lymphoblastic leukemia (ALL) with lysine (K)-specific methyltransferase 2A rearrangement (KMT2Ar). We performed array-based DNA methylation profiling of KMT2Ar ALL cells from 26 children in comparison to normal B-cell precursors. Significant changes in DNA methylation in KMT2Ar ALL were identified in 2,545 CpG loci, influenced by age and the translocation partners AFF1 and MLLT1. In KMT2Ar ALL, DNA methylation loss was enriched at enhancers and for certain transcription factor binding sites such as BCL11A, EBF, and MEF2A. In summary, DNA methylation changes in KMT2Ar ALL target enhancers, genes involved in leukemogenesis and normal hematopoiesis, as well as transcription factor networks.
  •  
2.
  • Dyke, Stephanie O M, et al. (författare)
  • Epigenome data release : a participant-centered approach to privacy protection
  • 2015
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale epigenome mapping by the NIH Roadmap Epigenomics Project, the ENCODE Consortium and the International Human Epigenome Consortium (IHEC) produces genome-wide DNA methylation data at one base-pair resolution. We examine how such data can be made open-access while balancing appropriate interpretation and genomic privacy. We propose guidelines for data release that both reduce ambiguity in the interpretation of open-access data and limit immediate access to genetic variation data that are made available through controlled access.
  •  
3.
  • Quentmeier, Hilmar, et al. (författare)
  • Subclones in B-lymphoma cell lines: isogenic models for the studyof gene regulation
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:39, s. 63456-63465
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic heterogeneity though common in tumors has been rarely documented in celllines. To examine how often B-lymphoma cell lines are comprised of subclones, weperformed immunoglobulin (IG) heavy chain hypermutation analysis. Revealing thatsubclones are not rare in B-cell lymphoma cell lines, 6/49 IG hypermutated cell lines(12%) consisted of subclones with individual IG mutations. Subclones were alsoidentified in 2/284 leukemia/lymphoma cell lines exhibiting bimodal CD markerexpression. We successfully isolated 10 subclones from four cell lines (HG3, SUDHL-5, TMD-8, U-2932). Whole exome sequencing was performed to molecularlycharacterize these subclones. We describe in detail the clonal structure of cell lineHG3, derived from chronic lymphocytic leukemia. HG3 consists of three subcloneseach bearing clone-specific aberrations, gene expression and DNA methylationpatterns. While donor patient leukemic cells were CD5+, two of three HG3 subcloneshad independently lost this marker. CD5 on HG3 cells was regulated byepigenetic/transcriptional mechanisms rather than by alternative splicing as reportedhitherto. In conclusion, we show that the presence of subclones in cell lines carryingindividual mutations and characterized by sets of differentially expressed genes is notuncommon. We show also that these subclones can be useful isogenic models forregulatory and functional studies.
  •  
4.
  • Wahl, Simone, et al. (författare)
  • Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  • 2017
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7635, s. 81-
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type (2) diabetes, cardiovascular disease and related metabolic and inflammatory disturbances(1,2). Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation(3-6), a key regulator of gene expression and molecular phenotype(7). Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy