SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Anderegg C) "

Sökning: WFRF:(Anderegg C)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Fisher, Rosie A., et al. (författare)
  • Vegetation demographics in Earth System Models : A review of progress and priorities
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:1, s. 35-54
  • Forskningsöversikt (refereegranskat)abstract
    • Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.
  •  
6.
  • Anderegg, G. C., et al. (författare)
  • Litter removal reduces seed predation in restored prairies during times when seed predation would otherwise be high
  • 2022
  • Ingår i: Restoration Ecology. - : Wiley. - 1061-2971 .- 1526-100X. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding patterns of seed predation in tallgrass prairie restorations is vital because seed additions are often used by managers to increase diversity and promote native species. However, the success of seed additions depends on the extent of seed predation. It is not clear how seed predation varies through time and to what extent it is affected by various commonly used management techniques in grasslands (e.g. spring or fall prescribed burns, mowing). We examined how predation of Sorghastrum nutans seeds changed during eight trials between June 2018 and April 2019 in plots that received one of four different plant litter removal treatments (fall mow, fall burn, spring burn, and unaltered control). Granivory varied throughout the year, reaching its peak in the late fall and early winter. However, we found that seed predators consumed significantly fewer seeds when litter was removed following fall burn and fall mow treatment applications. These treatments occurred during times when granivory was otherwise high in areas where litter remained intact (control and spring burn plots). Our findings highlight the importance of management decisions and how they interact with granivory in grassland restorations. Both time of year and litter cover determine seed predation rates; seed predators consume more seeds when seeds are abundant but rely on intact litter cover while foraging. This suggests that if seeds are added during the fall, litter should be removed to minimize the loss of seeds to granivory. Alternatively, seed additions during the spring are likely to experience lower rates of seed predation.
  •  
7.
  • Pellegrini, Adam F.A., et al. (författare)
  • Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 553:7687, s. 194-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy