SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antonietti Markus) "

Sökning: WFRF:(Antonietti Markus)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ajjan, Fátima, et al. (författare)
  • Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment
  • 2017
  • Ingår i: Polymer international. - : WILEY. - 0959-8103 .- 1097-0126. ; 66:8, s. 1119-1128
  • Forskningsöversikt (refereegranskat)abstract
    • This paper presents the work carried out within the European project RENAISSANCE-ITN, which was dedicated to the development of innovative polyelectrolytes for energy and environmental applications. Within the project different types of innovative polyelectrolytes were synthesized such as poly(ionic liquid)s coming from renewable or natural ions, thiazolium cations, catechol functionalities or from a new generation of cheap deep eutectic monomers. Further, macromolecular architectures such as new poly(ionic liquid) block copolymers and new (semi)conducting polymer/polyelectrolyte complexes were also developed. As the final goal, the application of these innovative polymers in energy and the environment was investigated. Important advances in energy storage technologies included the development of new carbonaceous materials, new lignin/conducting polymer biopolymer electrodes, new iongels and single-ion conducting polymer electrolytes for supercapacitors and batteries and new poly(ionic liquid) binders for batteries. On the other hand, the use of innovative polyelectrolytes in sustainable environmental technologies led to the development of new liquid and dry water, new materials for water cleaning technologies such as flocculants, oil absorbers, new recyclable organocatalyst platforms and new multifunctional polymer coatings with antifouling and antimicrobial properties. All in all this paper demonstrates the potential of poly(ionic liquid)s for high-value applications in energy and enviromental areas. (c) 2017 Society of Chemical Industry
  •  
2.
  • Grygiel, Konrad, et al. (författare)
  • Omnidispersible poly(ionic liquid)-functionalized cellulose nanofibrils : surface grafting and polymer membrane reinforcement
  • 2014
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1359-7345 .- 1364-548X. ; 50:83, s. 12486-12489
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a facile one-step route to graft poly(ionic liquid)s (PILs) onto cellulose nanofibrils (CNFs). The dispersibility of the PIL-functionalized CNFs in water and various organic solvents could be tuned by the choice of the PIL-binding anion. We demonstrate that such omnidispersible PIL@CNF hybrids can be used to reinforce porous poly(ionic liquid) membranes.
  •  
3.
  • Lin, Huijuan, et al. (författare)
  • Poly(ionic liquid)s with engineered nanopores for energy and environmental applications
  • 2020
  • Ingår i: Polymer. - : Elsevier BV. - 0032-3861 .- 1873-2291. ; 202
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly(ionic liquid) (PIL) integrates some intrinsic characteristics of ionic liquids (ILs) with classic merits of polymeric materials, and opens up a new dimension to research ionic polymers. Nanoporous PILs with controlled nanopores combine the advantages of two classes of functional materials, i.e., porous polymers and ILs, which greatly expand their applicability to energy storage and conversion, environmental sensing, gas sorption and catalysis. In this short review, we summarize the recent advances in the design and synthesis of nanoporous PILs, focusing on pore generation and engineering, electrostatic interactions, and potential applications to address energy and environmental issues. Porous carbons from nanoporous PIL templates/precursors are also briefly discussed as an extension of nanoporous PILs for energy research. Finally, our future perspectives on the potential of nanoporous PILs are presented.
  •  
4.
  • Liu, Si-hua, et al. (författare)
  • Smart Hydrogen Atoms in Heterocyclic Cations of 1,2,4-Triazolium-Type Poly(ionic liquid)s
  • 2022
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 55:24, s. 3675-3687
  • Forskningsöversikt (refereegranskat)abstract
    • Discovering and constructing molecular functionality platforms for materials chemistry innovation has been a persistent target in the fields of chemistry, materials, and engineering. Around this task, basic scientific questions can be asked, novel functional materials can be synthesized, and efficient system functionality can be established. Poly(ionic liquid)s (PILs) have attracted growing interest far beyond polymer science and are now considered an interdisciplinary crossing point between multiple research areas due to their designable chemical structure, intriguing physicochemical properties, and broad and diverse applications. Recently, we discovered that 1,2,4-triazolium-type PILs show enhanced performance profiles, which are due to stronger and more abundant supramolecular interactions ranging from hydrogen bonding to metal coordination, when compared with structurally similar imidazolium counterparts. This phenomenon in our view can be related to the smart hydrogen atoms (SHAs), that is, any proton that binds to the carbon in the N-heterocyclic cations of 1,2,4-triazolium-type PILs. The replacement of one carbon by an electron-withdrawing nitrogen atom in the broadly studied heterocyclic imidazolium ring will further polarize the C–H bond (especially for C5–H) of the resultant 1,2,4-triazolium cation and establish new chemical tools for materials design. For instance, the H-bond-donating strength of the SHA, as well as its Bro̷nsted acidity, is increased. Furthermore, polycarbene complexes can be readily formed even in the presence of weak or medium bases, which is by contrast rather challenging for imidazolium-type PILs. The combination of SHAs with the intrinsic features of heterocyclic cation-functionalized PILs (e.g., N-coordination capability and polymeric multibinding effects) enables new phenomena and therefore innovative materials applications.In this Account, recent progress on SHAs is presented. SHA-related applications in several research branches are highlighted together with the corresponding materials design at size scales ranging from nano- to micro- and macroscopic levels. At a nanoscopic level, it is possible to manipulate the interior and outer shapes and surface properties of PIL nanocolloids by adjusting the hydrogen bonds (H-bonds) between SHAs and water. Owing to the interplay of polycarbene structure, N-coordination, and the polymer multidentate binding of 1,2,4-triazolium-type PILs, metal clusters with controllable size at sub-nanometer scale were successfully synthesized and stabilized, which exhibited record-high catalytic performance in H2 generation via methanolysis of ammonia borane. At the microscopic level, SHAs are found to efficiently catalyze single crystal formation of structurally complex organics. Free protons in situ released from the SHAs serve as organocatalysts to activate formation of C–N bonds at room temperature in a series of imine-linked crystalline porous organics, such as organic cages, macrocycles and covalent organic frameworks; meanwhile the concurrent “salting-out” effect of PILs as polymers in solution accelerated the crystallization rate of product molecules by at least 1 order of magnitude. At the macroscopic scale, by finely regulating the supramolecular interactions of SHAs, a series of functional supramolecular porous polyelectrolyte membranes (SPPMs) with switchable pores and gradient cross-sectional structures were manufactured. These membranes demonstrate impressive figures of merit, ranging from chiral separation and proton recognition to switchable optical properties and real-time chemical reaction monitoring. Although the concept of SHAs is in the incipient stage of development, our successful examples of applications portend bright prospects for materials chemistry innovation.
  •  
5.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
6.
  • Sun, Jian-Ke, et al. (författare)
  • Three birds, one stone - photo-/piezo-/chemochromism in one conjugated nanoporous ionic organic network
  • 2018
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 6:34
  • Tidskriftsartikel (refereegranskat)abstract
    • A nanoporous material bearing a high ion density and inherent organic radical character was synthesized by a facile one-pot process, which exhibits photo-, piezo- and chemochromism, driven by the diverse electron transfer processes between the acceptor framework and different electron donors. The responsive behavior is useful for its sensing application, as demonstrated here for pressure, anion and gas sensing.
  •  
7.
  • Wang, Hong, et al. (författare)
  • Polymer-Derived Heteroatom-Doped Porous Carbon Materials
  • 2020
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 120:17, s. 9363-9419
  • Forskningsöversikt (refereegranskat)abstract
    • Heteroatom-doped porous carbon materials (HPCMs) have found extensive applications in adsorption/separation, organic catalysis, sensing, and energy conversion/storage. The judicious choice of carbon precursors is crucial for the manufacture of HPCMs with specific usages and maximization of their functions. In this regard, polymers as precursors have demonstrated great promise because of their versatile molecular and nanoscale structures, modulatable chemical composition, and rich processing techniques to generate textures that, in combination with proper solid-state chemistry, can be maintained throughout carbonization. This Review comprehensively surveys the progress in polymer-derived functional HPCMs in terms of how to produce and control their porosities, heteroatom doping effects, and morphologies and their related use. First, we summarize and discuss synthetic approaches, including hard and soft templating methods as well as direct synthesis strategies employing polymers to control the pores and/or heteroatoms in HPCMs. Second, we summarize the heteroatom doping effects on the thermal stability, electronic and optical properties, and surface chemistry of HPCMs. Specifically, the heteroatom doping effect, which involves both single-type heteroatom doping and codoping of two or more types of heteroatoms into the carbon network, is discussed. Considering the significance of the morphologies of HPCMs in their application spectrum, potential choices of suitable polymeric precursors and strategies to precisely regulate the morphologies of HPCMs are presented. Finally, we provide our perspective on how to predefine the structures of HPCMs by using polymers to realize their potential applications in the current fields of energy generation/conversion and environmental remediation. We believe that these analyses and deductions are valuable for a systematic understanding of polymer-derived carbon materials and will serve as a source of inspiration for the design of future HPCMs.
  •  
8.
  • Wang, Yang, et al. (författare)
  • Lamellar carbon nitride membrane for enhanced ion sieving and water desalination
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane-based water treatment processes offer possibility to alleviate the water scarcity dilemma in energy-efficient and sustainable ways, this has been exemplified in filtration membranes assembled from two-dimensional (2D) materials for water desalination purposes. Most representatives however tend to swell or disintegrate in a hydrated state, making precise ionic or molecular sieving a tough challenge. Here we report that the chemically robust 2D carbon nitride can be activated using aluminum polycations as pillars to modulate the interlayer spacing of the conjugated framework, the noncovalent interaction concomitantly affords a well-interlinked lamellar structure, to be carefully distinguished from random stacking patterns in conventional carbon nitride membranes. The conformally packed membrane is characterized by adaptive subnanochannel and structure integrity to allow excellent swelling resistance, and breaks permeability-selectivity trade-off limit in forward osmosis due to progressively regulated transport passage, achieving high salt rejection (>99.5%) and water flux (6 L m−2 h−1), along with tunable permeation behavior that enables water gating in acidic and alkaline environments. These findings position carbon nitride a rising building block to functionally expand the 2D membrane library for applications in water desalination and purification scenarios.
  •  
9.
  • Wicklein, Bernd, et al. (författare)
  • Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide
  • 2015
  • Ingår i: Nature Nanotechnology. - 1748-3387 .- 1748-3395. ; 10:3, s. 277-283
  • Tidskriftsartikel (refereegranskat)abstract
    • High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K-1, which is about half that of expanded polystyrene. At 30 degrees C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.
  •  
10.
  • Yu, Zhi-Long, et al. (författare)
  • Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels
  • 2018
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 57:17, s. 4538-4542
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy efficient buildings require materials with a low thermal conductivity and a high fire resistance. Traditional organic insulation materials are limited by their poor fire resistance and inorganic insulation materials are either brittle or display a high thermal conductivity. Herein we report a mechanically resilient organic/inorganic composite aerogel with a thermal conductivity significantly lower than expanded polystyrene and excellent fire resistance. Co-polymerization and nanoscale phase separation of the phenol-formaldehyde-resin (PFR) and silica generate a binary network with domain sizes below 20 nm. The PFR/SiO2 aerogel can resist a high-temperature flame without disintegration and prevents the temperature on the non-exposed side from increasing above the temperature critical for the collapse of reinforced concrete structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy