SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arora Neha) "

Sökning: WFRF:(Arora Neha)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Al-Sabri, Mohamed H., et al. (författare)
  • Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy : Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes
  • 2022
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 11:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, C1C-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle C1C-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored C1C-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered C1C-a expression. Taken together, these results may indicate the potential role of C1C-a inhibition in statinassociated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
  •  
3.
  •  
4.
  • Arora, Neha, et al. (författare)
  • NMR-Based Metabolomic Approach To Elucidate the Differential Cellular Responses during Mitigation of Arsenic(III, V) in a Green Microalga
  • 2018
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 3:9, s. 11847-11856
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear magnetic resonance (NMR)-based metabolomic approach is a high-throughput fingerprinting technique that allows a rapid snapshot of metabolites without any prior knowledge of the organism. To demonstrate the applicability of NMR-based metabolomics in the field of microalgal-based bioremediation, novel freshwater microalga Scenedesmus sp. IITRIND2 that showed hypertolerance to As(III, V) was chosen for evaluating the metabolic perturbations during arsenic stress in both its oxidation states As(III) and As(V). Using NMR spectroscopy, we were able to identify and quantify an array of ∼45 metabolites, including amino acids, sugars, organic acids, phosphagens, osmolytes, nucleotides, etc. The NMR metabolomic experiments were complemented with various biophysical techniques to establish that the microalga tolerated the arsenic stress using a complex interplay of metabolites. The two different arsenic states distinctly influenced the microalgal cellular mechanisms due to their altered physicochemical properties. Eighteen differentially identified metabolites related to bioremediation of arsenic were then correlated to the major metabolic pathways to delineate the variable stress responses of microalga in the presence of As(III, V).
  •  
5.
  • Patel, Alok, Dr. 1989-, et al. (författare)
  • A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production
  • 2019
  • Ingår i: Ultrasonics sonochemistry. - : Elsevier. - 1350-4177 .- 1873-2828. ; 51, s. 504-516
  • Tidskriftsartikel (refereegranskat)abstract
    • Oleaginous yeasts have emerged as a sustainable source of renewable oils for liquid biofuels. However, biodiesel production from them has few constraints with respect to their cell disruption and lipid extraction techniques. The lipid extraction from oleaginous yeasts commonly includes dewatering and drying of cell biomass, which requires energy and time. The aim of this work was to establish a process for the lipid extraction techniques from wet biomass applying acid catalyzed hot water, microwave, rapid ultrasonication-microwave treatment together with conventional Bligh and Dyer method. In the wake of testing all procedures, it was revealed that rapid ultrasonication-microwave treatment has great potential to give high lipid content (70.86 % w/w) on the cell dry weight basis. The lipid profile after treatment showed the presence of appropriate quantities of saturated (10.39 ± 0.15%), monounsaturated (76.55 ± 0.19%) and polyunsaturated fatty acids (11.49 ± 0.23%) which further improves biodiesel quality compared to the rest of methods. To the best of our knowledge, this is the first report of using rapid ultrasonication-microwave treatment for the lipid extraction from wet oleaginous yeast biomass in the literature.
  •  
6.
  •  
7.
  • Patel, Alok, Dr. 1989-, et al. (författare)
  • Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast.
  • 2017
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 340, s. 47-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenol is reported to be one of the most toxic environmental pollutants present in the discharge of various industrial effluents causing a serious threat to the existing biome. Biodegradation of phenol by oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 was found to degrade 1000mg/l phenol. The pathways for phenol degradation by both ortho and meta-cleavage were proposed by the identification of metabolites and enzymatic assays of ring cleavage enzymes in the cell extracts. Results suggest that this oleaginous yeast degrade phenol via meta-cleavage pathway and accumulates a high quantity of lipid content (64.92%; wt/wt) as compared to control glucose synthetic medium (GSM). Meta-cleavage pathway of phenol degradation leads to formation of pyruvate and acetaldehyde. Both these end products feed as precursors for de novo triacylglycerols (TAG) biosynthesis pathway which causes accumulation of TAG in the lipid droplets (LD) of 6.12±0.78μm grown on phenol while 2.38±0.52μm observed on GSM. This was confirmed by fluorescence microscopic images of BODIPY505-515nm stained live yeast cells. GC-MS analysis of extracted total lipid showed enhanced amount of monounsaturated fatty acid (MUFA) which was as 51.87%, 58.33% and 62.98% in presence of 0.5, 0.75 and 1g/l of phenol.
  •  
8.
  • Patel, Alok, Dr. 1989-, et al. (författare)
  • Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1
  • 2015
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 197, s. 91-8
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explored biodiesel production from a low cost, abundant, non-edible lignocellulosic biomass from aqueous extract of Cassia fistula L. (CAE) fruit pulp. The CAE was utilized as substrate for cultivating novel oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. This oleaginous yeast accumulates high amount of triacylglycerides as large intracellular lipid droplets (4.35±0.54μm) using CAE as sole nutritional source. Total lipids (4.86±0.54g/l) with lipid content of 53.18% (w/w) were produced by R. kratochvilovae HIMPA1 on CAE. The FAME profile obtained revealed palmitic acid (C16:0) 43.06%, stearic acid (C18:0) 28.74%, and oleic acid (C18:1) 17.34% as major fatty acids. High saturated fatty acids content (72.58%) can be blended with high PUFA feedstocks to make it an industrially viable renewable energy product.
  •  
9.
  • Zhao, Lichen, et al. (författare)
  • Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 8:35
  • Tidskriftsartikel (refereegranskat)abstract
    • There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra- aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy