SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asplund Charlotta) "

Sökning: WFRF:(Asplund Charlotta)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Uhlén, Mathias, et al. (författare)
  • A human protein atlas for normal and cancer tissues based on antibody proteomics
  • 2005
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 4:12, s. 1920-1932
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, similar to 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.
  •  
2.
  • Moens, Lotte N., et al. (författare)
  • Diagnostics of Primary Immunodeficiency Diseases : A Sequencing Capture Approach
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12, s. e114901-
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary Immunodeficiencies (PID) are genetically inherited disorders characterized by defects of the immune system, leading to increased susceptibility to infection. Due to the variety of clinical symptoms and the complexity of current diagnostic procedures, accurate diagnosis of PID is often difficult in daily clinical practice. Thanks to the advent of next generation'' sequencing technologies and target enrichment methods, the development of multiplex diagnostic assays is now possible. In this study, we applied a selector-based target enrichment assay to detect disease-causing mutations in 179 known PID genes. The usefulness of this assay for molecular diagnosis of PID was investigated by sequencing DNA from 33 patients, 18 of which had at least one known causal mutation at the onset of the experiment. We were able to identify the disease causing mutations in 60% of the investigated patients, indicating that the majority of PID cases could be resolved using a targeted sequencing approach. Causal mutations identified in the unknown patient samples were located in STAT3, IGLL1, RNF168 and PGM3. Based on our results, we propose a stepwise approach for PID diagnostics, involving targeted resequencing, followed by whole transcriptome and/or whole genome sequencing if causative variants are not found in the targeted exons.
  •  
3.
  •  
4.
  • Sassi, Atfa, et al. (författare)
  • Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels
  • 2014
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 133:5, s. 1410-U681
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. Objective: We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. Methods: After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. Results: Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p. Glu340del and p. Leu83Ser). A third homozygous mutation (p. Asp502Tyr) and the p. Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. Conclusion: Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.
  •  
5.
  • Älgenäs, Cajsa, et al. (författare)
  • Antibody performance in western blot applications is context- dependent
  • 2014
  • Ingår i: Biotechnology Journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 9:3, s. 435-445
  • Tidskriftsartikel (refereegranskat)abstract
    • An important concern for the use of antibodies in various applications, such as western blot (WB) or immunohistochemistry (IHC), is specificity. This calls for systematic validations using well-designed conditions. Here, we have analyzed 13000 antibodies using western blot with lysates from human cell lines, tissues, and plasma. Standardized stratification showed that 45% of the antibodies yielded supportive staining, and the rest either no staining (12%) or protein bands of wrong size (43%). A comparative study of WB and IHC showed that the performance of antibodies is application-specific, although a correlation between no WB staining and weak IHC staining could be seen. To investigate the influence of protein abundance on the apparent specificity of the antibody, new WB analyses were performed for 1369 genes that gave unsupportive WBs in the initial screening using cell lysates with overexpressed full-length proteins. Then, more than 82% of the antibodies yielded a specific band corresponding to the full-length protein. Hence, the vast majority of the antibodies (90%) used in this study specifically recognize the target protein when present at sufficiently high levels. This demonstrates the context- and application-dependence of antibody validation and emphasizes that caution is needed when annotating binding reagents as specific or cross-reactive. WB is one of the most commonly used methods for validation of antibodies. Our data implicate that solely using one platform for antibody validation might give misleading information and therefore at least one additional method should be used to verify the achieved data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy