SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Backman Ludvig J.) "

Sökning: WFRF:(Backman Ludvig J.)

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson, Frida, et al. (författare)
  • Mutations in Collagen, Type XVII, Alpha 1 (COL17A1) Cause Epithelial Recurrent Erosion Dystrophy (ERED)
  • 2015
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 36:4, s. 463-473
  • Tidskriftsartikel (refereegranskat)abstract
    • Corneal dystrophies are a clinically and genetically heterogeneous group of inherited disorders that bilaterally affect corneal transparency. They are defined according to the corneal layer affected and by their genetic cause. In this study, we identified a dominantly inherited epithelial recurrent erosion dystrophy (ERED)-like disease that is common in northern Sweden. Whole-exome sequencing resulted in the identification of a novel mutation, c.2816C>T, p.T939I, in the COL17A1 gene, which encodes collagen type XVII alpha 1. The variant segregated with disease in a genealogically expanded pedigree dating back 200 years. We also investigated a unique COL17A1 synonymous variant, c.3156C>T, identified in a previously reported unrelated dominant ERED-like family linked to a locus on chromosome 10q23-q24 encompassing COL17A1. We show that this variant introduces a cryptic donor site resulting in aberrant pre-mRNA splicing and is highly likely to be pathogenic. Bi-allelic COL17A1 mutations have previously been associated with a recessive skin disorder, junctional epidermolysis bullosa, with recurrent corneal erosions being reported in some cases. Our findings implicate presumed gain-of-function COL17A1 mutations causing dominantly inherited ERED and improve understanding of the underlying pathology.
  •  
2.
  • Dowdeswell, J. A., et al. (författare)
  • High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin : Implications for ice-sheet grounding and deep-keeled icebergs
  • 2010
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:25-26, s. 3518-3531
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution geophysical evidence on the seafloor morphology and acoustic stratigraphy of the Yermak Plateau and northern Svalbard margin between 79°20′ and 81°30′N and 5° and 22°E is presented. Geophysical datasets are derived from swath bathymetry and sub-bottom acoustic profiling and are combined with existing cores to derive chronological control. Seafloor landforms, in the form of ice-produced lineations, iceberg ploughmarks of various dimensions (including features over 80 m deep and down to about 1000 m), and a moat indicating strong currents are found. The shallow stratigraphy of the Yermak Plateau shows three acoustic units: the first with well-developed stratification produced by hemipelagic sedimentation, often draped over a strong and undulating internal reflector; a second with an undulating upper surface and little acoustic penetration, indicative of the action of ice; a third unit of an acoustically transparent facies, resulting from debris flows. Core chronology suggests a MIS 6 age for the undulating seafloor above about 580 m. There are several possible explanations, including: (a) the flow of a major grounded ice sheet across the plateau crest from Svalbard (least likely given the consolidation state of the underlying sediments); (b) the more transient encroachment of relatively thin ice from Svalbard; or (c) the drift across the plateau of an ice-shelf remnant or megaberg from the Arctic Basin. The latter is our favoured explanation given the evidence currently at our disposal.
  •  
3.
  • El-Habta, Roine, et al. (författare)
  • Adipose stem cells enhance myoblast proliferation via acetylcholine and extracellular signal-regulated kinase 1/2 signaling
  • 2018
  • Ingår i: Muscle and Nerve. - : WILEY. - 0148-639X .- 1097-4598. ; 57:2, s. 305-311
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In this study we investigated the interaction between adipose tissue-derived stem cells (ASCs) and myoblasts in co-culture experiments. Methods: Specific inductive media were used to differentiate ASCs in vitro into a Schwann cell-like phenotype (differentiated adipose tissuederived stem cells, or dASCs) and, subsequently, the expression of acetylcholine (ACh)-related machinery was determined. In addition, the expression of muscarinic ACh receptors was examined in denervated rat gastrocnemius muscles. Results: In contrast to undifferentiated ASCs, dASCs expressed more choline acetyltransferase and vesicular acetylcholine transporter. When co-cultured with myoblasts, dASCs enhanced the proliferation rate, as did ACh administration alone. Western blotting and pharmacological inhibitor studies showed that phosphorylated extracellular signal-regulated kinase 1/2 signaling mediated these effects. In addition, denervated muscle showed higher expression of muscarinic ACh receptors than control muscle. Discussion: Our findings suggest that dASCs promote proliferation of myoblasts through paracrine secretion of ACh, which could explain some of their regenerative capacity in vivo.
  •  
4.
  • El-Habta, Roine, 1988- (författare)
  • Cell therapy for denervated tissue
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Peripheral nerve injury results in denervation of tendons and muscles. The biology of denervated muscle has been well studied but little is known about the associated tendons. Denervation of muscle leads to atrophy which includes muscle fiber shrinkage and cell death, a process that is influenced by the lack of acetylcholine (ACh) signaling to the muscle cells. Recovery of long-term denervated muscle function is often poor. This thesis describes how a cell therapy approach using adipose tissue-derived stromal vascular fraction (SVF) may be used to protect and regenerate denervated muscle. Previous studies have shown how adipose tissue-dervied stem cells (ASCs), commonly expanded from the SVF, have pro-regenerative effects on the injured peripheral nervous system, and how ASCs differentiated towards a “Schwann cell-like phenotype” (dASCs) reduce muscle atrophy. In this thesis work, we studied the possible mechanisms underlying the regenerative potential of both SVF and culture expanded dASCs.Hypotheses: We hypothesized that: 1) denervated tendon displays morphological and biochemical properties that resemble the chronic degenerative tendon condition known as tendinosis; 2) denervated muscle up-regulates expression of muscarinic acetylcholine (ACh) receptors and apoptosis-associated signaling mechanisms; 3) dASCs enhance the proliferation of myoblasts in vitro through secretion of ACh; 4) SVF influences the proliferation, differentiation, and survival of myoblasts in vitro via secretion of growth factors; and 5) SVF can preserve denervated muscle tissue. To test our hypotheses, two model systems were used: an in vitro model based on indirect co-culture, and an in vivo rat sciatic nerve transection model.Results: Denervated tendon displayed morphological changes similar to tendinosis, including hypercellularity, disfigurement of cells, and disorganized collagen architecture, along with an increased expression of type I and type III collagen. In addition, levels of neurokinin 1 receptor (NK-1R) were upregulated in the tendon cells. In denervated muscle, there was an increased expression of muscarinic ACh receptors, as well as of genes associated with apoptosis, such as caspases, cytokines (e.g., tumor necrosis factor-alpha; TNF-a), and death domain receptors. We subsequently used TNF-aas an inducer of apoptosis in an in vitrorat primary myoblast culture model. TNF-aactivated/cleaved caspase 7 and increased poly ADP-ribose polymerase (PARP) levels. Moreover, Annexin V and TUNEL were increased after TNF-atreatment. Indirect co-culture with SVF significantly reduced all these measures of apoptosis. Proliferation studies showed that both dASCs and SVF enhanced growth of myoblasts in vitro. With dASCs, the effect was partially explained by secretion of ACh, and for SVF by released growth factors, such as hepatocyte growth factor (HGF). In both cases, the signal was mediated via phosphorylation of ERK1/2 (MAPK). HGF also had an inhibitory effect on the differentiation of myoblasts into myotubes. Finally, the protective effects of SVF were confirmed in vivo: injections of SVF into denervated muscle significantly increased the mean fiber area and diameter, as well as reduced the expression of apoptotic genes and TUNEL reactivity.Conclusions: Denervated tendons undergo severe degenerative changes similar to tendinosis. Furthermore, SVF has the ability to reduce muscle atrophy in vivo. Using in vitro systems, we showed that this might occur through secretion of growth factors which activate MAPK signaling and anti-apoptotic pathways. In conclusion, SVF offers a promising approach for future clinical application in the treatment of denervated muscle.
  •  
5.
  • El-Habta, Roine, et al. (författare)
  • The adipose tissue stromal vascular fraction secretome enhances the proliferation but inhibits the differentiation of myoblasts
  • 2018
  • Ingår i: Stem Cell Research & Therapy. - : BioMed Central. - 1757-6512. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adipose tissue is an excellent source for isolation of stem cells for treating various clinical conditions including injuries to the neuromuscular system. Many previous studies have focused on differentiating these adipose stem cells (ASCs) towards a Schwann cell-like phenotype (dASCs), which can enhance axon regeneration and reduce muscle atrophy. However, the stromal vascular fraction (SVF), from which the ASCs are derived, also exerts broad regenerative potential and might provide a faster route to clinical translation of the cell therapies for treatment of neuromuscular disorders.Methods: The aim of this study was to establish the effects of SVF cells on the proliferation and differentiation of myoblasts using indirect co-culture experiments. A Growth Factor PCR Array was used to compare the secretomes of SVF and dASCs, and the downstream signaling pathways were investigated.Results: SVF cells, unlike culture-expanded dASCs, expressed and secreted hepatocyte growth factor (HGF) at concentrations sufficient to enhance the proliferation of myoblasts. Pharmacological inhibitor studies revealed that the signal is mediated via ERK1/2 phosphorylation and that the effect is significantly reduced by the addition of 100 pM Norleual, a specific HGF inhibitor. When myoblasts were differentiated into multinucleated myotubes, the SVF cells reduced the expression levels of fast-type myosin heavy chain (MyHC2) suggesting an inhibition of the differentiation process.Conclusions: In summary, this study shows the importance of HGF as a mediator of the SVF effects on myoblasts and provides further evidence for the importance of the secretome in cell therapy and regenerative medicine applications.
  •  
6.
  • Li, Junhong, et al. (författare)
  • Secretome from myoblasts statically loaded at low intensity promotes tenocyte proliferation via the IGF-1 receptor pathway
  • 2023
  • Ingår i: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 37:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise is widely recognized as beneficial for tendon healing. Recently, it has been described that muscle-derived molecules secreted in response to static exercise influence tendon healing. In this study, the optimal static loading intensity for tendon healing and the composition of secretome released by myoblasts in response to different intensities of static strain were investigated. In an in vitro coculture model, myoblasts were mechanically loaded using a Flexcell Tension System. Tenocytes were seeded on transwell inserts that allowed communication between the tenocytes and myoblasts without direct contact. Proliferation and migration assays, together with RNA sequencing, were used to determine potential cellular signaling pathways. The secretome from myoblasts exposed to 2% static loading increased the proliferation and migration of the cocultured tenocytes. RNA-seq analysis revealed that this loading condition upregulated the expression of numerous genes encoding secretory proteins, including insulin-like growth factor-1 (IGF-1). Confirmation of IGF-1 expression and secretion was carried out using qPCR and enzyme-linked immunosorbt assay (ELISA), revealing a statistically significant upregulation in response to 2% static loading in comparison to both control conditions and higher loading intensities of 5% and 10%. Addition of an inhibitor of the IGF-1 receptor (PQ401) to the tenocytes significantly reduced myoblast secretome-induced tenocyte proliferation. In conclusion, IGF-1 may be an important molecule in the statically loaded myoblast secretome, which is responsible for influencing tenocytes during exercise-induced healing.
  •  
7.
  • Zhou, Xin, et al. (författare)
  • Secretome from in vitro mechanically loaded myoblasts induces tenocyte migration, transition to a fibroblastic phenotype and suppression of collagen production
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:23
  • Tidskriftsartikel (refereegranskat)abstract
    • It is known that mechanical loading of muscles increases the strength of healing tendon tissue, but the mechanism involved remains elusive. We hypothesized that the secretome from myoblasts in co-culture with tenocytes affects tenocyte migration, cell phenotype, and collagen (Col) production and that the effect is dependent on different types of mechanical loading of myoblasts. To test this, we used an in vitro indirect transwell co-culture system. Myoblasts were mechanically loaded using the FlexCell® Tension system. Tenocyte cell migration, proliferation, apoptosis, collagen production, and several tenocyte markers were measured. The secretome from myoblasts decreased the Col I/III ratio and increased the expression of tenocyte specific markers as compared with tenocytes cultured alone. The secretome from statically loaded myoblasts significantly enhanced tenocyte migration and Col I/III ratio as compared with dynamic loading and controls. In addition, the secretome from statically loaded myoblasts induced tenocytes towards a myofibroblast-like phenotype. Taken together, these results demonstrate that the secretome from statically loaded myoblasts has a profound influence on tenocytes, affecting parameters that are related to the tendon healing process.
  •  
8.
  • Andersson, Gustav, et al. (författare)
  • Nerve distributions in insertional Achilles tendinopathy - a comparison of bone, bursae and tendon
  • 2017
  • Ingår i: Histology and Histopathology. - 0213-3911 .- 1699-5848. ; 32:3, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aim. In a condition of pain in the Achilles tendon insertion there are multiple structures involved, such as the Achilles tendon itself, the retrocalcaneal bursa and a bony protrusion at the calcaneal tuberosity called Haglund's deformity. The innervation patterns of these structures are scarcely described, and the subcutaneous calcaneal bursa is traditionally not considered to be involved in the pathology. This study aimed at describing the innervation patterns of the four structures described above to provide a better understanding of possible origins of pain at the Achilles tendon insertion.Methods. Biopsies were taken from 10 patients with insertional Achilles tendinopathy, which had pathological changes in the subcutaneous and retrocalcaneal bursae, a Haglund deformity and Achilles tendon tendinopathy as verified by ultrasound. The biopsies were stained using immunohistochemistry in order to delineate the innervation patterns in the structures involved in insertional Achilles tendinopathy.Results. Immunohistochemical examinations found that the subcutaneous bursa scored the highest using a semi-quantitative evaluation of the degree of innervation when compared to the retrocalcaneal bursa, the Achilles tendon, and the calcaneal bone.Conclusions. These findings suggest that the subcutaneous bursa, which is traditionally not included in surgical treatment, may be a clinically important factor in insertional Achilles tendinopathy.
  •  
9.
  • Backman, Ludvig J, 1983-, et al. (författare)
  • Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes
  • 2013
  • Ingår i: Journal of Cellular and Molecular Medicine (Print). - : Wiley-Blackwell. - 1582-1838 .- 1582-4934. ; 17:6, s. 723-733
  • Tidskriftsartikel (refereegranskat)abstract
    • Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated incases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt,which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fastreatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanismsSP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e.induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trendwas seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas inducescleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, inducedthrough the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this antiapoptoticeffect of SP is mediated through NK-1 R and Akt-specific pathways.
  •  
10.
  • Backman, Ludvig J, et al. (författare)
  • Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity : comparison between two model systems
  • 2013
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - : John Wiley & Sons. - 0905-7188 .- 1600-0838. ; 23:6, s. 687-696
  • Tidskriftsartikel (refereegranskat)abstract
    • The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α(2A) AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α(2A) AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α(2A) AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy