SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barrio Isabel C.) "

Sökning: WFRF:(Barrio Isabel C.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
2.
  • Barbero-Palacios, Laura, et al. (författare)
  • Herbivore diversity effects on Arctic tundra ecosystems : a systematic review
  • 2024
  • Ingår i: Environmental Evidence. - : BioMed Central (BMC). - 2047-2382. ; 13:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Northern ecosystems are strongly influenced by herbivores that differ in their impacts on the ecosystem. Yet the role of herbivore diversity in shaping the structure and functioning of tundra ecosystems has been overlooked. With climate and land-use changes causing rapid shifts in Arctic species assemblages, a better understanding of the consequences of herbivore diversity changes for tundra ecosystem functioning is urgently needed. This systematic review synthesizes available evidence on the effects of herbivore diversity on different processes, functions, and properties of tundra ecosystems.Methods: Following a published protocol, our systematic review combined primary field studies retrieved from bibliographic databases, search engines and specialist websites that compared tundra ecosystem responses to different levels of vertebrate and invertebrate herbivore diversity. We used the number of functional groups of herbivores (i.e., functional group richness) as a measure of the diversity of the herbivore assemblage. We screened titles, abstracts, and full texts of studies using pre-defined eligibility criteria. We critically appraised the validity of the studies, tested the influence of different moderators, and conducted sensitivity analyses. Quantitative synthesis (i.e., calculation of effect sizes) was performed for ecosystem responses reported by at least five articles and meta-regressions including the effects of potential modifiers for those reported by at least 10 articles.Review findings: The literature searches retrieved 5944 articles. After screening titles, abstracts, and full texts, 201 articles including 3713 studies (i.e., individual comparisons) were deemed relevant for the systematic review, with 2844 of these studies included in quantitative syntheses. The available evidence base on the effects of herbivore diversity on tundra ecosystems is concentrated around well-established research locations and focuses mainly on the impacts of vertebrate herbivores on vegetation. Overall, greater herbivore diversity led to increased abundance of feeding marks by herbivores and soil temperature, and to reduced total abundance of plants, graminoids, forbs, and litter, plant leaf size, plant height, and moss depth, but the effects of herbivore diversity were difficult to tease apart from those of excluding vertebrate herbivores. The effects of different functional groups of herbivores on graminoid and lichen abundance compensated each other, leading to no net effects when herbivore effects were combined. In turn, smaller herbivores and large-bodied herbivores only reduced plant height when occurring together but not when occurring separately. Greater herbivore diversity increased plant diversity in graminoid tundra but not in other habitat types.Conclusions: This systematic review underscores the importance of herbivore diversity in shaping the structure and function of Arctic ecosystems, with different functional groups of herbivores exerting additive or compensatory effects that can be modulated by environmental conditions. Still, many challenges remain to fully understand the complex impacts of herbivore diversity on tundra ecosystems. Future studies should explicitly address the role of herbivore diversity beyond presence-absence, targeting a broader range of ecosystem responses and explicitly including invertebrate herbivores. A better understanding of the role of herbivore diversity will enhance our ability to predict whether and where shifts in herbivore assemblages might mitigate or further amplify the impacts of environmental change on Arctic ecosystems.
  •  
3.
  • Barrio, Isabel C., et al. (författare)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
4.
  •  
5.
  • Lindén, Elin, et al. (författare)
  • Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs
  • 2022
  • Ingår i: Ecography. - : John Wiley & Sons. - 0906-7590 .- 1600-0587. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top–down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography–mass spectrometry (LC–MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations.We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence.We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation.
  •  
6.
  • Tuomi, Maria, et al. (författare)
  • Stomping in silence : Conceptualizing trampling effects on soils in polar tundra
  • 2021
  • Ingår i: Functional Ecology. - : Wiley. - 0269-8463 .- 1365-2435. ; 35:2, s. 306-317
  • Forskningsöversikt (refereegranskat)abstract
    • Ungulate trampling modifies soils and interlinked ecosystem functions across biomes. Until today, most research has focused on temperate ecosystems and mineral soils while trampling effects on cold and organic matter-rich tundra soils remain largely unknown. We aimed to develop a general model of trampling effects on soil structure, biota, microclimate and biogeochemical processes, with a particular focus on polar tundra soils. To reach this goal, we reviewed literature about the effects of trampling and physical disturbances on soils across biomes and used this to discuss the knowns and unknowns of trampling effects on tundra soils. We identified the following four pathways through which trampling affects soils: (a) soil compaction; (b) reductions in soil fauna and fungi; (c) rapid losses in vegetation biomass and cover; and (d) longer term shifts in vegetation community composition. We found that, in polar tundra, soil responses to trampling pathways 1 and 3 could be characterized by nonlinear dynamics and tundra-specific context dependencies that we formulated into testable hypotheses. In conclusion, trampling may affect tundra soil significantly but many direct, interacting and cascading responses remain unknown. We call for research to advance the understanding of trampling effects on soils to support informed efforts to manage and predict the functioning of tundra systems under global changes. A free Plain Language Summary can be found within the Supporting Information of this article.
  •  
7.
  • Tedersoo, Leho, et al. (författare)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
8.
  • Rheubottom, Sarah, I, et al. (författare)
  • Hiding in the background : community-level patterns in invertebrate herbivory across the tundra biome
  • 2019
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 42:10, s. 1881-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Invertebrate herbivores depend on external temperature for growth and metabolism. Continued warming in tundra ecosystems is proposed to result in increased invertebrate herbivory. However, empirical data about how current levels of invertebrate herbivory vary across the Arctic is limited and generally restricted to a single host plant or a small group of species, so predicting future change remains challenging. We investigated large-scale patterns of invertebrate herbivory across the tundra biome at the community level and explored how these patterns are related to long-term climatic conditions and year-of-sampling weather, habitat characteristics, and aboveground biomass production. Utilizing a standardized protocol, we collected samples from 92 plots nested within 20 tundra sites during summer 2015. We estimated the community-weighted biomass lost based on the total leaf area consumed by invertebrates for the most common plant species within each plot. Overall, invertebrate herbivory was prevalent at low intensities across the tundra, with estimates averaging 0.94% and ranging between 0.02 and 5.69% of plant biomass. Our results suggest that mid-summer temperature influences the intensity of invertebrate herbivory at the community level, consistent with the hypothesis that climate warming should increase plant losses to invertebrates in the tundra. However, most of the observed variation in herbivory was associated with other site level characteristics, indicating that other local ecological factors also play an important role. More details about the local drivers of invertebrate herbivory are necessary to predict the consequences for rapidly changing tundra ecosystems.
  •  
9.
  • Tijani, Muyideen K., et al. (författare)
  • High Diversity of Giardia duodenalis Assemblages and Sub-Assemblages in Asymptomatic School Children in Ibadan, Nigeria
  • 2023
  • Ingår i: Tropical Medicine and Infectious Disease. - : MDPI AG. - 2414-6366. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Giardia duodenalis is a significant contributor to the burden of diarrheal disease in sub-Saharan Africa. This study assesses the occurrence and molecular diversity of G. duodenalis and other intestinal parasites in apparently healthy children (n = 311) in Ibadan, Nigeria. Microscopy was used as a screening method and PCR and Sanger sequencing as confirmatory and genotyping methods, respectively. Haplotype analyses were performed to examine associations between genetic variants and epidemiological variables. At microscopy examination, G. duodenalis was the most prevalent parasite found (29.3%, 91/311; 95% CI: 24.3–34.7), followed by Entamoeba spp. (18.7%, 58/311; 14.5–23.4), Ascaris lumbricoides (1.3%, 4/311; 0.4–3.3), and Taenia sp. (0.3%, 1/311; 0.01–1.8). qPCR confirmed the presence of G. duodenalis in 76.9% (70/91) of the microscopy-positive samples. Of them, 65.9% (60/91) were successfully genotyped. Assemblage B (68.3%, 41/60) was more prevalent than assemblage A (28.3%, 17/60). Mixed A + B infections were identified in two samples (3.3%, 2/60). These facts, together with the absence of animal-adapted assemblages, suggest that human transmission of giardiasis was primarily anthroponotic. Efforts to control G. duodenalis (and other fecal-orally transmitted pathogens) should focus on providing safe drinking water and improving sanitation and personal hygiene practices.
  •  
10.
  • Vuorinen, Katariina E.M., et al. (författare)
  • Growth rings show limited evidence for ungulates' potential to suppress shrubs across the Arctic
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming has pronounced effects on tundra vegetation, and rising mean temperatures increase plant growth potential across the Arctic biome. Herbivores may counteract the warming impacts by reducing plant growth, but the strength of this effect may depend on prevailing regional climatic conditions. To study how ungulates interact with temperature to influence growth of tundra shrubs across the Arctic tundra biome, we assembled dendroecological data from 20 sites, comprising 1153 individual shrubs and 223 63 annual growth rings. Evidence for ungulates suppressing shrub radial growth was only observed at intermediate summer temperatures (6.5 °C-9 °C), and even at these temperatures the effect was not strong. Multiple factors, including forage preferences and landscape use by the ungulates, and favourable climatic conditions enabling effective compensatory growth of shrubs, may weaken the effects of ungulates on shrubs, possibly explaining the weakness of observed ungulate effects. Earlier local studies have shown that ungulates may counteract the impacts of warming on tundra shrub growth, but we demonstrate that ungulates' potential to suppress shrub radial growth is not always evident, and may be limited to certain climatic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Barrio, Isabel C. (9)
Speed, James D. M. (7)
Alatalo, Juha M. (5)
Forbes, Bruce C. (4)
Schmidt, Niels Marti ... (4)
Olofsson, Johan (4)
visa fler...
Hik, David S. (4)
Soininen, Eeva M. (4)
Boike, Julia (4)
Buchwal, Agata (4)
Bueno, C. Guillermo (4)
Ehrich, Dorothee (4)
Normand, Signe (4)
Grogan, Paul (3)
Kaarlejärvi, Elina (3)
Myers-Smith, Isla (3)
Sokolova, Natalia (3)
Lindén, Elin (3)
Te Beest, Mariska (3)
Andersson, Tommi (3)
Bråthen, Kari Anne (3)
Bryant, John P. (3)
Hallinger, Martin (3)
Hofgaard, Annika (3)
Holmgren, Milena (3)
Høye, Toke T. (3)
Huebner, Diane C. (3)
Jónsdóttir, Ingibjor ... (3)
Kumpula, Timo (3)
Lévesque, Esther (3)
Limpens, Juul (3)
Skarin, Anna (2)
Sokolov, Alexander (2)
Post, Eric (2)
Björk, Robert G., 19 ... (2)
Björkman, Mats P., 1 ... (2)
Petit Bon, Matteo (2)
Björnsdóttir, Katrín (2)
Rocha, Adrian (2)
Asmus, Ashley (2)
Christie, Katherine ... (2)
Denisova, Yulia V. (2)
Egelkraut, Dagmar (2)
Fishback, LeeAnn (2)
Gartzia, Maite (2)
Heijmans, Monique M. ... (2)
Lange, Cynthia Y. M. ... (2)
Lange, Jelena (2)
Macias-Fauria, Marc (2)
van Nieukerken, Erik ... (2)
visa färre...
Lärosäte
Umeå universitet (6)
Sveriges Lantbruksuniversitet (5)
Göteborgs universitet (3)
Lunds universitet (3)
Stockholms universitet (2)
Uppsala universitet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy