SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Basili A.) "

Sökning: WFRF:(Basili A.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Bongi, M, et al. (författare)
  • PAMELA : A satellite experiment for antiparticles measurement in cosmic rays
  • 2004
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 51:3, s. 854-859
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10(-8). The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.
  •  
3.
  • Galper, A. M., et al. (författare)
  • International Russian-Italian mission "Rim-Pamela
  • 2009
  • Ingår i: Proceedings of the 13th Lomonosov Conference on Elementary Particle Physics. - : WORLD SCIENTIFIC. - 9812837582 - 9789812837585 ; , s. 199-206
  • Konferensbidrag (refereegranskat)abstract
    • The successful launch of spacecraft "RESURS DK" 1 with precision magnetic spectrometer "PAMELA" onboard was executed at Baikonur cosmodrome 15 June 2006. The primary phase of realization of International Russian-Italian Project "RIM-PAMELA" with German and Swedish scientists' participation has begun since the launch of instrument "PAMELA" that has mainly been directed to investigate the fluxes of galactic cosmic rays. This report contains the main scientific Project's tasks and the conditions of science program's implementation after one year since exploration has commenced.
  •  
4.
  • Adriani, O., et al. (författare)
  • The PAMELA space mission
  • 2008
  • Ingår i: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
5.
  • Boezio, M., et al. (författare)
  • The first year in orbit of the pamela experiment
  • 2007
  • Ingår i: Proceedings of the 30th International Cosmic Ray Conference, ICRC 2007. - : Universidad Nacional Autonoma de Mexico. ; , s. 99-102
  • Konferensbidrag (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA experiment mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The PAMELA apparatus comprises a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. We will present the status of the apparatus after one year in orbit. Furthermore, we will discuss the PAMELA in-flight performances.
  •  
6.
  • Boezio, M., et al. (författare)
  • The PAMELA space experiment : First year of operation
  • 2008
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 110:6
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006 the PAMELA experiment, mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. © 2008 IOP Publishing Ltd.
  •  
7.
  • Casolino, M., et al. (författare)
  • Cosmic-ray observations of the heliosphere with the PAMELA experiment
  • 2006
  • Ingår i: Astrophysics. - : Elsevier BV. ; , s. 1848-1852
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is a multi-purpose apparatus built around a permanent magnet spectrometer, with the main goal of studying in detail the antiparticle component of cosmic rays. The apparatus will be carried in space by means of a Russian satellite, due to launch in 2005, for a three year-long mission. The characteristics of the detectors composing the instrument, alongside the long lifetime of the mission and the orbital characteristics of the satellite, will allow to address several items of cosmic-ray physics. In this paper, we will focus on the solar and heliospheric observation capabilities of PAMELA.
  •  
8.
  • Casolino, M., et al. (författare)
  • Magnetospheric and solar physics observations with the PAMELA experiment
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 588:1-2, s. 243-246
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment designed to make long duration measurements of the cosmic radiation in Low Earth Orbit. It is devoted to the detection of the cosmic-ray spectra in the 100 MeV-300 GeV range with primary scientific goal the measurement of antiproton and positron spectra over the largest energy range ever achieved. Other tasks include the search for antinuclei with unprecedented sensitivity and the measurement of the light nuclear component of cosmic rays. In addition, PAMELA can investigate phenomena connected with solar and Earth physics. The apparatus consists of: a Time of Flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work we present some measurements of galactic, secondary and trapped particles performed in the first months of operation.
  •  
9.
  • Papini, P., et al. (författare)
  • In-flight performances of the PAMELA satellite experiment
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 588:1-2, s. 259-266
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satcllite-borne experiment designed to study with great accuracy charged particles in the cosmic radiation with a particular focus on antiparticles. The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June 15, 2006 in a 350 x 600 km orbit with an inclination of 70 degrees. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. In this work, the detector design is reviewed and the in-orbit performances in the first months after the launch are presented.
  •  
10.
  • Pearce, Mark, et al. (författare)
  • PAMELA : a payload for antimatter matter exploration and light-nuclei astrophysics - status and first results
  • 2007
  • Ingår i: 2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11. - 9781424409228 ; , s. 42-47
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment designed for precision studies of the charged cosmic radiation. The primary scientific goal is the study of the antimatter component of the cosmic radiation (antiprotons, 80 MeV - 190 GeV; and positrons, 50 MeV - 270 GeV) in order to search for evidence of dark matter particle annihilations. PAMELA will also search for primordial antinuclei (in particular, anti-helium), and test cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and studies of light nuclei and their isotopes. Concomitant goals include a study of solar physics and solar modulation during the 24th solar minimum by investigating low energy particles in the cosmic radiation; and a reconstruction of the cosmic ray electron energy spectrum up to several TeV thereby allowing a possible contribution from local sources to be studied. PAMELA is housed on-board the Russian Resurs-DK1 satellite, which was launched on June 15th 2006 in an elliptical (350-600 km altitude) orbit with an inclination of 70 degrees. PAMELA consists of a permanent magnet spectrometer, to provide rigidity and charge sign information; a Time-of-Flight and trigger system, for velocity and charge determination; a silicon-tungsten calorimeter, for lepton/hadron discrimination; and a neutron detector. An anticoincidence system is used offline to reject false triggers. In this article the PAMELA experiment and its status are reviewed. A preliminary discussion of data recorded in-orbit is also presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy