SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Becares E) "

Sökning: WFRF:(Becares E)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diakaki, M., et al. (författare)
  • Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN -€“ n_TOF
  • 2016
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Konferensbidrag (refereegranskat)abstract
    • The U-238 fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The U-238 fission cross section has been measured relative to the U-235 fission cross section at CERN - n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards.
  •  
2.
  • Leal-Cidoncha, E., et al. (författare)
  • High accuracy 234U(n,f) cross section in the resonance energy region
  • 2017
  • Ingår i: ND 2016. - Les Ulis : EDP Sciences. - 9782759890200
  • Konferensbidrag (refereegranskat)abstract
    • New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n_TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n_TOF neutron flux.
  •  
3.
  •  
4.
  • Paradela, C., et al. (författare)
  • High-accuracy determination of the 238U/235U fission cross section ratio up to ~1 GeV at n_TOF at CERN
  • 2015
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 91, s. 024602-
  • Tidskriftsartikel (refereegranskat)abstract
    • The U238 to U235 fission cross section ratio has been determined at n_TOF up to ≈1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3–4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n_TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to ≈1 GeV.
  •  
5.
  •  
6.
  • Tarrío, Diego, et al. (författare)
  • Neutron-induced fission cross sections of Th-232 and U-233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility
  • 2023
  • Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 107:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutron-induced fission cross sections of Th-232 and U-233 were measured relative to U-235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th-232, and from 0.7 eV in case of U-233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U-233, previous results available in EXFOR, whereas in the case of Th-232 these data were obtained from our measurement, using PPACs and targets tilted 45 degrees with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those ( p, f) data with our (n, f) data on Th-232 and U-233 and on other isotopes studied earlier at n_TOF using the same experimental setup.
  •  
7.
  • Moss, B, et al. (författare)
  • The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive
  • 2003
  • Ingår i: Aquatic Conservation: Marine and Freshwater Ecosystems. - : Wiley. - 1052-7613. ; 13:6, s. 507-549
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The European Water Framework Directive requires the determination of ecological status in European fresh and saline waters. This is to be through the establishment of a typology of surface water bodies, the determination of reference (high status) conditions in each element (ecotype) of the typology and of lower grades of status (good, moderate, poor and bad) for each ecotype. It then requires classification of the status of the water bodies and their restoration to at least 'good status' in a specified period. 2. Though there are many methods for assessing water quality, none has the scope of that defined in the Directive. The provisions of the Directive require a wide range of variables to be measured and give only general guidance as to how systems of classification should be established. This raises issues of comparability across States and of the costs of making the determinations. 3. Using expert workshops and subsequent field testing, a practicable pan-European typology and classification system has been developed for shallow lakes, which can easily be extended to all lakes. It is parsimonious in its choice of determinands, but based on current limnological understanding and therefore as cost-effective as possible. 4. A core typology is described, which can be expanded easily in particular States to meet local conditions. The core includes 48 ecotypes across the entire European climate gradient and incorporates climate, lake area, geology of the catchment and conductivity. 5. The classification system is founded on a liberal interpretation of Annexes in the Directive and uses variables that are inexpensive to measure and ecologically relevant. The need for taxonomic expertise is minimized. 6. The scheme has been through eight iterations, two of which were tested in the field on tranches of 66 lakes. The final version, Version 8, is offered for operational testing and further refinement by statutory authorities.
  •  
8.
  • Tarrío, Diego, et al. (författare)
  • Fission Fragment Angular Distribution of Th-232(n,f) at the CERN n_TOF Facility
  • 2014
  • Ingår i: Nuclear Data Sheets. - Univ Santiago de Compostela, Santiago De Compostela, Spain. [Leong, L. S.; Audouin, L.; Tassan-Got, L.; Lederer, C.] IPN, CNRS, IN2P3, Orsay, France. [Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Andrzejewski, J.; Marganiec, J.; Perkowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Becares, V.; Cano-Ott, D.; Garcia, A. R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.] CIEMAT, E-28040 Madrid, Spain. [Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S.] Charles Univ Prague, Prague, Czech Republic. [Belloni, F.; Berthoumieux, E.; Bosnar, D.; Chiaveri, E.; Fraval, K.; Gunsing, F.] CEA Saclay, Irfu, F-91191 Gif Sur Yvette, France. [Berthoumieux, E.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Losito, R.; Roman, F.; Rubbia, C.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Billowes, J.; Ware, T.; Wright, T. J.] Univ Manchester, Manchester, Lancs, England. [Zugec, P.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia. [Calvino, F.; Cortes, G.; Gomez-Hornillos, M. B.; Riego, A.] Univ Politecn Cataluna, Barcelona, Spain. [Carrapico, C.; Goncalves, I. F.; Sarmento, R.; Vaz, P.] Univ Tecn Lisboa, Inst Super Tecn, Inst Tecnol Nucl, P-1096 Lisbon, Portugal. [Cortes-Giraldo, M. A.; Praena, J.; Quesada, J. M.] Univ Seville, Seville, Spain. [Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Domingo-Pardo, C.; Giubrone, G.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Dzysiuk, N.; Mastinu, P. F.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Milan, Italy. [Eleftheriadis, C.; Manousos, A.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. [Ganesan, S.; Gurusamy, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Griesmayer, E.; Jericha, E.; Leeb, H.; Weiss, C.] Vienna Univ Technol, Inst Atom, Vienna, Austria. [Jenkins, D. G.; Vermeulen, M. J.] Univ York, York YO10 5DD, N Yorkshire, England. [Kaeppeler, F.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Koehler, P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lederer, C.; Pavlik, A.; Wallner, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Massimi, C.; Mingrone, F.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Mengoni, A.; Ventura, A.] Agenzia Nazl Nuove Tecnol, Eenergia & Sviluppo Econ Sostenibile ENEA, Bologna, Italy. [Milazzo, P. M.] Ist Nazl Fis Nucl, Trieste, Italy. [Mirea, M.; Roman, F.] Horia Hulubei Natl Inst Phys & Nucl Engn, IFIN HH, Bucharest, Romania. [Mondalaers, W.; Plompen, A.; Schillebeeckx, P.] European Commiss JRC, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Rubbia, C.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, AQ, Italy. : Elsevier BV. - 0090-3752 .- 1095-9904. ; 119, s. 35-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The angular distribution of fragments emitted in neutron-induced fission of Th-232 was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the Th-232(n,f) between fission threshold and 100 MeV are presented here.
  •  
9.
  • Tarrío, Diego, et al. (författare)
  • Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 743, s. 79-85
  • Tidskriftsartikel (refereegranskat)abstract
    • A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n_TOF) facility at CERN. The detectors and the samples were tilted 45 degrees with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the Th-232(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup.
  •  
10.
  • Noges, P, et al. (författare)
  • Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe
  • 2003
  • Ingår i: Hydrobiologia. - 1573-5117 .- 0018-8158. ; 506:1-3, s. 51-58
  • Konferensbidrag (refereegranskat)abstract
    • In order to disentangle the causes of variations in water chemistry among European shallow lakes, we performed standardised sampling programs in 86 lakes along a latitudinal gradient from southern Spain to northern Sweden. Lakes with an area of 0.1 to 27000 ha and mean depth of 0.4-5.6 m located in low to high altitudes were investigated within the EC project ECOFRAME 1-4 times during June-October 2000-2001. Several variables like conductivity, alkalinity, abundance of submerged plants, concentrations of suspended solids, total nitrogen and phosphorus were latitude-dependent decreasing from south to north. Secchi depth, concentrations of total nitrogen, total phosphorus, suspended solids, and chlorophyll a correlated strongly with the presumed quality classes of the lakes. We came to the conclusion that the variability of shallow lakes in Europe is still mostly dependent on natural differences. Variables connected to lake morphometry, seasonality, basin geology and climate explained altogether nearly half of the total variability of lakes. The trophic state factor, describing mostly the human influence on lakes, was the strongest single factor responsible for nearly a quarter of the total variability of the studied European lakes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy