SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bendix Jesper) "

Sökning: WFRF:(Bendix Jesper)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnson, Catherine, et al. (författare)
  • Ferrous and ferric complexes with cyclometalating N-heterocyclic carbene ligands : a case of dual emission revisited
  • 2023
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 14:37, s. 10129-10139
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron N-heterocyclic carbene (FeNHC) complexes with long-lived charge transfer states are emerging as a promising class of photoactive materials. We have synthesized [Fe-II(ImP)(2)] (ImP = bis(2,6-bis(3-methylimidazol-2-ylidene-1-yl)phenylene)) that combines carbene ligands with cyclometalation for additionally improved ligand field strength. The 9 ps lifetime of its (MLCT)-M-3 (metal-to-ligand charge transfer) state however reveals no benefit from cyclometalation compared to Fe(II) complexes with NHC/pyridine or pure NHC ligand sets. In acetonitrile solution, the Fe(II) complex forms a photoproduct that features emission characteristics (450 nm, 5.1 ns) that were previously attributed to a higher ((MLCT)-M-2) state of its Fe(III) analogue [Fe-III(ImP)(2)](+), which led to a claim of dual (MLCT and LMCT) emission. Revisiting the photophysics of [Fe-III(ImP)(2)](+), we confirmed however that higher ((MLCT)-M-2) states of [Fe-III(ImP)(2)](+) are short-lived (<10 ps) and therefore, in contrast to the previous interpretation, cannot give rise to emission on the nanosecond timescale. Accordingly, pristine [Fe-III(ImP)(2)](+) prepared by us only shows red emission from its lower (LMCT)-L-2 state (740 nm, 240 ps). The long-lived, higher energy emission previously reported for [Fe-III(ImP)(2)](+) is instead attributed to an impurity, most probably a photoproduct of the Fe(II) precursor. The previously reported emission quenching on the nanosecond time scale hence does not support any excited state reactivity of [Fe-III(ImP)(2)](+) itself.
  •  
2.
  • Prakash, Om, et al. (författare)
  • Photophysical Integrity of the Iron(III) Scorpionate Framework in Iron(III)-NHC Complexes with Long-Lived 2LMCT Excited States
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:44, s. 17515-17526
  • Tidskriftsartikel (refereegranskat)abstract
    • Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]–, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]–, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]–. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]– by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6–1.7 ns) and sizable emission quantum yields (1.7–1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.
  •  
3.
  • Chábera, Pavel, et al. (författare)
  • A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 543:7647, s. 695-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal complexes are used as photosensitizers1, in light-emitting diodes, for biosensing and in photocatalysis2. A key feature in these applications is excitation from the ground state to a charge-transfer state3,4; the long charge-transfer-state lifetimes typical for complexes of ruthenium5 and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron6 and copper7 being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs6,8,9,10, it remains a formidable scientific challenge11 to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered12 photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers13,14,15. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes4,16,17. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
  •  
4.
  • Dreiser, Jan, et al. (författare)
  • Direct observation of a ferri-to-ferromagnetic transition in a fluoride-bridged 3d-4f molecular cluster
  • 2012
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520. ; 3:4, s. 1024-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the synthesis, crystal structure and magnetic characterisation of the trinuclear, fluoride-bridged, molecular nanomagnet [Dy(hfac)(3)(H2O)-CrF2(py)(4)-Dy(hfac)(3)(NO3)] (1) (hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone, py = pyridine) and a closely related dinuclear species [Dy(hfac)(4)-CrF2( py)(4)]center dot 1/2 CHCl3 (2). Element-specific magnetisation curves obtained on 1 by X-ray magnetic circular dichroism (XMCD) allow us to directly observe the field-induced transition from a ferrimagnetic to a ferromagnetic arrangement of the Dy and Cr magnetic moments. By fitting a spin-Hamiltonian model to the XMCD data we extract a weak antiferromagnetic exchange coupling of j -0.18 cm(-1) between the Dy-III and Cr-III ions. The value found from XMCD is consistent with SQUID magnetometry and inelastic neutron scattering measurements. Furthermore, alternating current susceptibility and muon-spin relaxation measurements reveal that 1 shows thermally activated relaxation of magnetisation with a small effective barrier for magnetisation reversal of Delta(eff) 3 cm(-1). Density-functional theory calculations show that the Dy-Cr couplings originate from superexchange via the fluoride bridges.
  •  
5.
  • Dreiser, Jan, et al. (författare)
  • Exchange Interaction of Strongly Anisotropic Tripodal Erbium Single-Ion Magnets with Metallic Surfaces
  • 2014
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 8:5, s. 4662-4671
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed on a Ni thin film on 0(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented. Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals that the molecules are mobile on Au(111) at room temperature, whereas they are more strongly attached on Ni/Cu(100). X-ray photoelectron spectroscopy results provide evidence for the chemical bonding between Er(trensal) molecules and the Ni substrate. Density functional theory calculations support these findings and, in addition, reveal the most stable adsorption configuration on Ni/Cu(100) as well as the Ni-Er exchange path. Our study suggests that the magnetic moment of Er(trensal) can be stabilized via suppression of quantum tunneling of magnetization by exchange coupling to the Ni surface atoms. Moreover, it opens up pathways toward optical addressing of surface-deposited single-ion magnets.
  •  
6.
  • Kjær, Kasper Skov, et al. (författare)
  • Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6424, s. 249-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron’s abundance and rich coordination chemistry are potentially appealing features for photochemical applications. However, the photoexcitable charge-transfer (CT) states of most Fe complexes are limited by picosecond or sub-picosecond deactivation through low-lying metal centered (MC) states, resulting in inefficient electron transfer reactivity and complete lack of photoluminescence. Here we show that octahedral coordination of Fe(III) by two mono-anionic facial tris-carbene ligands can suppress such deactivation dramatically. The resulting complex [Fe(phtmeimb)2]+, where phtmeimb is [phenyl(tris(3-methylimidazol-1-ylidene))borate]-, exhibits strong, visible, room temperature photoluminescence with a 2.0 ns lifetime and 2% quantum yield via spin-allowed transition from a ligand-to-metal charge-transfer (2 LMCT) state to the ground state (2 GS). Reductive and oxidative electron transfer reactions were observed for the2 LMCT state of [Fe(phtmeimb)2]+ in bimolecular quenching studies with methylviologen and diphenylamine.
  •  
7.
  • Moreno-Pescador, Guillermo, et al. (författare)
  • Curvature- and Phase-Induced Protein Sorting Quantified in Transfected Cell-Derived Giant Vesicles
  • 2019
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 13:6, s. 6689-6701
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic cells possess a dynamic network of membranes that vary in lipid composition. To perform numerous biological functions, cells modulate their shape and the lateral organization of proteins associated with membranes. The modulation is generally facilitated by physical cues that recruit proteins to specific regions of the membrane. Analyzing these cues is difficult due to the complexity of the membrane conformations that exist in cells. Here, we examine how different types of membrane proteins respond to changes in curvature and to lipid phases found in the plasma membrane. By using giant plasma membrane vesicles derived from transfected cells, the proteins were positioned in the correct orientation and the analysis was performed in plasma membranes with a biological composition. Nanoscale membrane curvatures were generated by extracting nanotubes from these vesicles with an optical trap. The viral membrane protein neuraminidase was not sensitive to curvature, but it did exhibit strong partitioning (coefficient of K = 0.16) disordered membrane regions. In contrast, the membrane repair protein annexin 5 showed a preference for nanotubes with a density up to 10-15 times higher than that on the more flat vesicle membrane. The investigation of nanoscale effects in isolated plasma membranes provides a quantitative platform for studying peripheral and integral membrane proteins in their natural environment.
  •  
8.
  • Mousa, Abdelrazek H., et al. (författare)
  • Enhancing the Stability of Aromatic PCN Pincer Nickel Complexes by Incorporation of Pyridine as the Nitrogen Side Arm
  • 2020
  • Ingår i: European Journal of Inorganic Chemistry. - : Wiley. - 1434-1948 .- 1099-0682. ; 2020:45, s. 4270-4277
  • Tidskriftsartikel (refereegranskat)abstract
    • New PCNPy pincer nickel complexes have been synthesized through a short synthetic route. Incorporating pyridine as the nitrogen side arm facilitated the C–H activation in the PCN ligand and allowed the cyclometallation with nickel to take place at room temperature. Pyridine also enhanced the stability of β-hydrogen-containing alkyl complexes. Also, the symmetric NCN nickel complex with pyridine side arms was successfully obtained giving a rare example of such type of complexes to be prepared through direct C–H activation. Furthermore, preliminary results showed that the (PCNPy)Ni–Br is active in Kumada coupling reactions particularly the coupling of aryl halides with aryl Grignard reagents.
  •  
9.
  • Mousa, Abdelrazek H., et al. (författare)
  • Synthesis, Characterization, and Reactivity of PCN Pincer Nickel Complexes
  • 2018
  • Ingår i: Organometallics. - : American Chemical Society (ACS). - 0276-7333 .- 1520-6041. ; 37:15, s. 2581-2593
  • Tidskriftsartikel (refereegranskat)abstract
    • New diamagnetic nickel(II) complexes based on an unsymmetrical (1-(3-((ditert-butylphosphino)methyl)phenyl)-N,N-dimethyl-methanamine) (PCN) pincer ligand were synthesized and characterized by 1H, 31P{1H}, and 13C{1H} NMR spectroscopy. Their molecular structures were confirmed by X-ray diffraction. Oxidation to high-valent paramagnetic Ni(III) dihalide complexes was achieved through straightforward reaction of the corresponding diamagnetic halide complexes with anhydrous CuX2 (X = Cl, Br). In agreement with this, the complexes are active in Kharasch addition of CCl4 to olefins. The reaction of the hydroxo complex (8) and the amido complex (11) with CO2 produced the hydrogen carbonate and carbamate complexes, respectively. The hydrogen carbonate complex was converted to the dinuclear nickel carbonate complex (10). The methyl (13), phenyl (14), and p-tolylacetylide (15) complexes are also described in the current study providing the first example of the hydrocarbyl nickel complexes based on an unsymmetric aromatic pincer ligand. Furthermore, the reactivity of the methyl complex toward different electrophiles has been investigated, showing that C-C bond formation is possible with aryl halides, whereas the reaction with CO2 is sluggish.
  •  
10.
  • Prakash, Om, et al. (författare)
  • A Stable Homoleptic Organometallic Iron(IV) Complex
  • 2020
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 26:56, s. 12728-12732
  • Tidskriftsartikel (refereegranskat)abstract
    • A homoleptic organometallic Fe(IV)complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)(2)](PF6)(2)(phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate](-)). This (FeN)-N-IV-heterocyclic carbene (NHC) complex was characterized by(1)H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mossbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)(2)](PF6)(2)is a triplet Fe(IV)low-spinS=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)(2)](PF6)(2)in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a Fe(IV)complex was studied and revealed a approximate to 0.8 ps lifetime of the(3)LMCT excited state of [Fe(phtmeimb)(2)](PF6)(2)in acetonitrile.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy