SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berner Hansen Mark) "

Sökning: WFRF:(Berner Hansen Mark)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Drobin, Kimi, et al. (författare)
  • Targeted Analysis of Serum Proteins Encoded at Known Inflammatory Bowel Disease Risk Loci
  • 2019
  • Ingår i: Inflammatory Bowel Diseases. - : Oxford University Press. - 1078-0998 .- 1536-4844. ; 25:2, s. 306-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Few studies have investigated the blood proteome of inflammatory bowel disease (IBD). We characterized the serum abundance of proteins encoded at 163 known IBD risk loci and tested these proteins for their biomarker discovery potential.Methods: Based on the Human Protein Atlas (HPA) antibody availability, 218 proteins from genes mapping at 163 IBD risk loci were selected. Targeted serum protein profiles from 49 Crohn's disease (CD) patients, 51 ulcerative colitis (UC) patients, and 50 sex- and age-matched healthy individuals were obtained using multiplexed antibody suspension bead array assays. Differences in relative serum abundance levels between disease groups and controls were examined. Replication was attempted for CD-UC comparisons (including disease subtypes) by including 64 additional patients (33 CD and 31 UC). Antibodies targeting a potentially novel risk protein were validated by paired antibodies, Western blot, immuno-capture mass spectrometry, and epitope mapping.Results: By univariate analysis, 13 proteins mostly related to neutrophil, T-cell, and B-cell activation and function were differentially expressed in IBD patients vs healthy controls, 3 in CD patients vs healthy controls and 2 in UC patients vs healthy controls (q < 0.01). Multivariate analyses further differentiated disease groups from healthy controls and CD subtypes from UC (P < 0.05). Extended characterization of an antibody targeting a novel, discriminative serum marker, the laccase (multicopper oxidoreductase) domain containing 1 (LACC1) protein, provided evidence for antibody on-target specificity.Conclusions: Using affinity proteomics, we identified a set of IBD-associated serum proteins encoded at IBD risk loci. These candidate proteins hold the potential to be exploited as diagnostic biomarkers of IBD.
  •  
3.
  • Krarup, Anne L., et al. (författare)
  • Randomized clinical trial: inhibition of the TRPV1 system in patients with nonerosive gastroesophageal reflux disease and a partial response to PPI treatment is not associated with analgesia to esophageal experimental pain.
  • 2013
  • Ingår i: Scandinavian journal of gastroenterology. - : Informa UK Limited. - 1502-7708 .- 0036-5521. ; 48:3, s. 274-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Objective. Many patients with nonerosive reflux disease (NERD) have insufficient relief on proton pump inhibitors (PPIs). Some patients have a hypersensitive esophagus and may respond to transient receptor potential vanilloid 1 (TRPV1) antagonists. Aim. To investigate the effect of the TRPV1 antagonist AZD1386 on experimental esophageal pain in NERD patients. Material and methods. Enrolled patients had NERD and a partial PPI response (moderate-to-severe heartburn or regurgitation ≥3 days/week before enrolment despite ≥6 weeks' PPI therapy). Fourteen patients (21-69 years, 9 women) were block-randomized into this placebo-controlled, double-blinded, crossover study examining efficacy of a single dose (95 mg) of AZD1386. On treatment days, each participant's esophagus was stimulated with heat, distension, and electrical current at teaching hospitals in Denmark and Sweden. Heat and pressure pain served as somatic control stimuli. Per protocol results were analyzed. Results. Of 14 randomized patients, 12 were treated with AZD1386. In the esophagus AZD1386 did not significantly change the moderate pain threshold for heat [-3%, 95% confidence interval (CI), -22;20%], distension (-11%, 95% CI, -28;10%), or electrical current (6%, 95% CI, -10;25%). Mean cutaneous heat tolerance increased by 4.9°C (95% CI, 3.7;6.2°C). AZD1386 increased the maximum body temperature by a mean of 0.59°C (95% CI, 0.40-0.79°C), normalizing within 4 h. Conclusions. AZD1386 had no analgesic effect on experimental esophageal pain in patients with NERD and a partial PPI response, whereas it increased cutaneous heat tolerance. TRPV1 does not play a major role in heat-, mechanically and electrically evoked esophageal pain in these patients. ClinicalTrials.gov identifier: D9127C00002.
  •  
4.
  •  
5.
  • Wan Saudi, Wan Salman, 1982- (författare)
  • Role of Melatonin, Neuropeptide S and Short Chain Fatty Acids in Regulation of Duodenal Mucosal Barrier Function and Motility
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The duodenal epithelium is regularly exposed to HCl, digestive enzymes, bacteria and toxins, and sometimes also to ethanol and drugs. The imbalance of aggressive factors in the intestinal lumen and mucosal barrier function increases the risk of tissue injury and inflammation. The key components of the duodenal barrier function include mucosal permeability, bicarbonate transport and the secretion or absorption of fluids. This thesis aims to elucidate the role of melatonin, neuropeptide S (NPS) and short chain fatty acids (SCFAs) in the regulation of intestinal mucosal barrier function and motility in the anesthetized rat in vivo and in tissues of human origin in vitro.Melatonin was found to reduce ethanol-induced increases in paracellular permeability and motility by a neural pathway within the enteric nervous system involving nicotinic receptors. In response to luminal exposure of ethanol, signs of mild mucosal edema and beginning of desquamation were observed in a few villi only, an effect that was not influenced by melatonin. Melatonin did not modify increases in paracellular permeability in response to luminal acid.NPS decreased basal and ethanol-induced increases in duodenal motility as well as bethanechol stimulated colonic motility in a dose-dependent manner. Furthermore, NPS was shown to inhibit basal duodenal bicarbonate secretion, stimulate mucosal fluid absorption and increase mucosal paracellular permeability. In response to luminal exposure of acid, NPS increased bicarbonate secretion and mucosal paracellular permeability. All effects induced by the administration of NPS were dependent on nitrergic pathways. In rats, administration of NPS increased the tissue protein levels of the inflammatory biomarkers IL-1β and CXCL1. Immunohistochemistry showed that NPS was localized at myenteric nerve cell bodies and fibers, while NPSR1 and nNOS were only confined to the myenteric nerve cell bodies.Perfusing the duodenal segment with the SCFAs acetate or propionate reduced the duodenal mucosal paracellular permeability, decreased transepithelial net fluid secretion and increased bicarbonate secretion. An i.v. infusion of SCFAs reduces mucosal paracellular permeability without any effects on mucosal net fluid flux. However, it significantly decreased bicarbonate secretion. Luminal SCFAs changed the duodenal motility pattern from fasting to feeding motility while i.v. SCFAs was without effect on motility. The systemic administration of glucagon-like peptide-2 (GLP-2) induced increases in mucosal bicarbonate secretion and fluid absorption. An i.v. GLP-2 infusion during a luminal perfusion of SCFAs significantly reduced the duodenal motility.In conclusion, the results in the present thesis show that melatonin, NPS and SCFAs influence the neurohumoral regulation of intestinal mucosal barrier function and motility. Aberrant signaling in response to melatonin, NPS and to luminal fatty acids might be involved in the symptom or the onset of disease related to intestinal dysfunction in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy