SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beuther H.) "

Sökning: WFRF:(Beuther H.)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ramírez-Tannus, M. C., et al. (författare)
  • The young stellar content of the giant H ii regions M8, G333.6 0.2, and NGC6357 with VLT/KMOS
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The identification and characterisation of populations of young massive stars in (giant) HII regions provides important constraints on (i) the formation process of massive stars and their early feedback on the environment, and (ii) the initial conditions for population synthesis models predicting the evolution of ensembles of stars. Aims. We identify and characterise the stellar populations of the following young giant HII regions: M 8, G333.6-0.2, and NGC 6357. Methods. We have acquired H- and K-band spectra of around 200 stars using the K-band Multi Object Spectrograph on the ESO Very Large Telescope. The targets for M 8 and NGC 6357 were selected from the Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX), which combines X-ray observations with near-infrared (NIR) and mid-infrared data. For G333.6-0.2, the sample selection is based on the NIR colours combined with X-ray data. We introduce an automatic spectral classification method in order to obtain temperatures and luminosities for the observed stars. We analysed the stellar populations using their photometric, astrometric, and spectroscopic properties and compared the position of the stars in the Hertzprung-Russell diagram with stellar evolution models to constrain their ages and mass ranges. Results. We confirm the presence of candidate ionising sources in the three regions and report new ones, including the first spectroscopically identified O stars in G333.6-0.2. In M 8 and NGC 6357, two populations are identified: (i) OB main-sequence stars (M> 5 M-circle dot) and (ii) pre-main sequence stars (M approximate to 0.5 - 5M(circle dot)). The ages of the clusters are similar to 1-3 Myr, < 3 Myr, and similar to 0.5-3 Myr for M 8, G333.6-0.2, and NGC 6357, respectively. We show that MYStIX selected targets have > 90% probability of being members of the HII region, whereas a selection based on NIR colours leads to a membership probability of only similar to 70%.
  •  
2.
  • André, Ph., et al. (författare)
  • Probing the cold magnetised Universe with SPICA-POL (B-BOP)
  • 2019
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 36
  • Forskningsöversikt (refereegranskat)abstract
    • Space Infrared Telescope for Cosmology and Astrophysics (SPICA), the cryogenic infrared space telescope recently pre-selected for a 'Phase A' concept study as one of the three remaining candidates for European Space Agency (ESA's) fifth medium class (M5) mission, is foreseen to include a far-infrared polarimetric imager [SPICA-POL, now called B-fields with BOlometers and Polarizers (B-BOP)], which would offer a unique opportunity to resolve major issues in our understanding of the nearby, cold magnetised Universe. This paper presents an overview of the main science drivers for B-BOP, including high dynamic range polarimetric imaging of the cold interstellar medium (ISM) in both our Milky Way and nearby galaxies. Thanks to a cooled telescope, B-BOP will deliver wide-field 100-350 mu m images of linearly polarised dust emission in Stokes Q and U with a resolution, signal-to-noise ratio, and both intensity and spatial dynamic ranges comparable to those achieved by Herschel images of the cold ISM in total intensity (Stokes I). The B-BOP 200 mu m images will also have a factor similar to 30 higher resolution than Planck polarisation data. This will make B-BOP a unique tool for characterising the statistical properties of the magnetised ISM and probing the role of magnetic fields in the formation and evolution of the interstellar web of dusty molecular filaments giving birth to most stars in our Galaxy. B-BOP will also be a powerful instrument for studying the magnetism of nearby galaxies and testing Galactic dynamo models, constraining the physics of dust grain alignment, informing the problem of the interaction of cosmic rays with molecular clouds, tracing magnetic fields in the inner layers of protoplanetary disks, and monitoring accretion bursts in embedded protostars.
  •  
3.
  • Ramírez-Tannus, M. C., et al. (författare)
  • A relation between the radial velocity dispersion of young clusters and their age : Evidence for hardening as the formation scenario of massive close binaries
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of massive stars (> 8 M-circle dot) in OB associations are found in close binary systems. Nonetheless, the formation mechanism of these close massive binaries is not understood yet. Using literature data, we measured the radial-velocity dispersion (sigma (1D)) as a proxy for the close binary fraction in ten OB associations in the Galaxy and the Large Magellanic Cloud, spanning an age range from 1 to 6 Myr. We find a positive trend of this dispersion with the cluster's age, which is consistent with binary hardening. Assuming a universal binary fraction of f(bin) = 0.7, we converted the sigma (1D) behavior to an evolution of the minimum orbital period P-cutoff from similar to 9.5 years at 1 Myr to similar to 1.4 days for the oldest clusters in our sample at similar to 6 Myr. Our results suggest that binaries are formed at larger separations, and they harden in around 1 to 2 Myr to produce the period distribution observed in few million year-old OB binaries. Such an inward migration may either be driven by an interaction with a remnant accretion disk or with other young stellar objects present in the system. Our findings constitute the first empirical evidence in favor of migration as a scenario for the formation of massive close binaries.
  •  
4.
  • Van Gelder, M. L., et al. (författare)
  • JOYS+: Mid-infrared detection of gas-phase SO 2 emission in a low-mass protostar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Thanks to the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST), our ability to observe the star formation process in the infrared has greatly improved. Due to its unprecedented spatial and spectral resolution and sensitivity in the mid-infrared, JWST/MIRI can see through highly extincted protostellar envelopes and probe the warm inner regions. An abundant molecule in these warm inner regions is SO2, which is a common tracer of both outflow and accretion shocks as well as hot core chemistry. Aims. This paper presents the first mid-infrared detection of gaseous SO2 emission in an embedded low-mass protostellar system rich in complex molecules and aims to determine the physical origin of the SO2 emission. Methods. JWST/MIRI observations taken with the Medium Resolution Spectrometer (MRS) of the low-mass protostellar binary NGC 1333 IRAS 2A in the JWST Observations of Young protoStars (JOYS+) program are presented. The observations reveal emission from the SO2 ν3 asymmetric stretching mode at 7.35 µm. Using simple slab models and assuming local thermodynamic equilibrium (LTE), we derived the rotational temperature and total number of SO2 molecules. We then compared the results to those derived from high-angular-resolution SO2 data on the same scales (∼50−100 au) obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). Results. The SO2 emission from the ν3 band is predominantly located on ∼50−100 au scales around the mid-infrared continuum peak of the main component of the binary, IRAS 2A1. A rotational temperature of 92 ± 8 K is derived from the ν3 lines. This is in good agreement with the rotational temperature derived from pure rotational lines in the vibrational ground state (i.e., ν = 0) with ALMA (104 ± 5 K), which are extended over similar scales. However, the emission of the ν3 lines in the MIRI-MRS spectrum is not in LTE given that the total number of molecules predicted by a LTE model is found to be a factor of 2 × 104 higher than what is derived for the ν = 0 state from the ALMA data. This difference can be explained by a vibrational temperature that is ∼100 K higher than the derived rotational temperature of the ν = 0 state: Tvib ∼ 200 K versus Trot = 104 ± 5 K. The brightness temperature derived from the continuum around the ν3 band (∼7.35 µm) of SO2 is ∼180 K, which confirms that the ν3 = 1 level is not collisionally populated but rather infrared-pumped by scattered radiation. This is also consistent with the non-detection of the ν2 bending mode at 18−20 µm. The similar rotational temperature derived from the MIRI-MRS and ALMA data implies that they are in fact tracing the same molecular gas. The inferred abundance of SO2 , determined using the LTE fit to the lines of the vibrational ground state in the ALMA data, is 1.0 ± 0.3 × 10−8 with respect to H2, which is on the lower side compared to interstellar and cometary ices (10−8−10−7). Conclusions. Given the rotational temperature, the extent of the emission (∼100 au in radius), and the narrow line widths in the ALMA data (∼3.5 km s−1), the SO2 in IRAS 2A likely originates from ice sublimation in the central hot core around the protostar rather than from an accretion shock at the disk–envelope boundary. Furthermore, this paper shows the importance of radiative pumping and of combining JWST observations with those from millimeter interferometers such as ALMA to probe the physics on disk scales and to infer molecular abundances.
  •  
5.
  • Beuther, H., et al. (författare)
  • JWST Observations of Young protoStars (JOYS): Outflows and accretion in the high-mass star-forming region IRAS 23385+6053
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Understanding the earliest stages of star formation, and setting it in the context of the general cycle of matter in the interstellar medium, is a central aspect of research with the James Webb Space Telescope (JWST). Aims. The JWST program JOYS (JWST Observations of Young protoStars) aims to characterize the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS 23385+6053. Methods. The JOYS program uses the Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) with its integral field unit (IFU) to investigate a sample of high- and low-mass star-forming protostellar systems. Results. The full 5-? 28 μm MIRI MRS spectrum of IRAS 23385+6053 shows a plethora of interesting features. While the general spectrum is typical for an embedded protostar, we see many atomic and molecular gas lines boosted by the higher spectral resolution and sensitivity compared to previous space missions. Furthermore, ice and dust absorption features are also present. Here, we focus on the continuum emission, outflow tracers such as the H2(0-? 0)S(7), [FeII](4F9/2-6D9/2), and [NeII](2P1/2-2P3/2) lines, and the potential accretion tracer Humphreys α H I(7-6). The short-wavelength MIRI data resolve two continuum sources, A and B; mid-infrared source A is associated with the main millimeter continuum peak. The combination of mid-infrared and millimeter data reveals a young cluster in the making. Combining the mid-infrared outflow tracers H2, [FeII], and [NeII] with millimeter SiO data reveals a complex interplay of at least three molecular outflows driven by protostars in the forming cluster. Furthermore, the Humphreys α line is detected at a 3-?4σ? level toward the mid-infrared sources A and B. One can roughly estimate both accretion luminosities and corresponding accretion rates to be between ∼2.6 × 10-6 and ∼0.9 × 10-4 Mo yr-1. This is discussed in the context of the observed outflow rates. Conclusions. The analysis of the MIRI MRS observations for this young high-mass star-forming region reveals connected outflow and accretion signatures, as well as the enormous potential of JWST to boost our understanding of the physical and chemical processes at play during star formation.
  •  
6.
  • Beuther, H., et al. (författare)
  • Magnetic fields at the onset of high-mass star formation
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The importance of magnetic fields at the onset of star formation related to the early fragmentation and collapse processes is largely unexplored today. Aims. We want to understand the magnetic field properties at the earliest evolutionary stages of high-mass star formation. Methods. The Atacama Large Millimeter Array is used at 1.3 mm wavelength in full polarization mode to study the polarized emission, and, using this, the magnetic field morphologies and strengths of the high-mass starless region IRDC 18310-4. Results. Polarized emission is clearly detected in four sub-cores of the region; in general it shows a smooth distribution, also along elongated cores. Estimating the magnetic field strength via the Davis-Chandrasekhar-Fermi method and following a structure function analysis, we find comparably large magnetic field strengths between ~0.3-5.3 mG. Comparing the data to spectral line observations, the turbulent-to-magnetic energy ratio is low, indicating that turbulence does not significantly contribute to the stability of the gas clump. A mass-to-flux ratio around the critical value 1.0 - depending on column density - indicates that the region starts to collapse, which is consistent with the previous spectral line analysis of the region. Conclusions. While this high-mass region is collapsing and thus at the verge of star formation, the high magnetic field values and the smooth spatial structure indicate that the magnetic field is important for the fragmentation and collapse process. This single case study can only be the starting point for larger sample studies of magnetic fields at the onset of star formation.
  •  
7.
  • Beuther, H., et al. (författare)
  • OH maser emission in the THOR survey of the northern Milky Way
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. OH masers trace diverse physical processes, from the expanding envelopes around evolved stars to star-forming regions or supernovae remnants. Providing a survey of the ground-state OH maser transitions in the northern hemisphere inner Milky Way facilitates the study of a broad range of scientific topics. Aims. We want to identify the ground-state OH masers at similar to 18 cm wavelength in the area covered by The HI/OH/Recombination line survey of the Milky Way (THOR). We will present a catalogue of all OH maser features and their possible associated environments. Methods. The THOR survey covers longitude and latitude ranges of 14 degrees.3 < l < 66 degrees.8 and b < +/- 1 degrees.25. All OH ground state lines (2)Pi(3/2) (J = 3/2) at 1612 (F = 1-2), 1665 (F = 1-1), 1667 (F = 2-2) and 1720 MHz (F = 2-1) have been observed, employing the Very Large Array (VLA) in its C configuration. The spatial resolution of the data varies between 12.5 '' and 19 '', the spectral resolution is 1.5 km s(-1), and the rms sensitivity of the data is similar to 10 mJy beam(-1) per channel. Results. We identify 1585 individual maser spots (corresponding to single spectral features) distributed over 807 maser sites (regions of size similar to 10(3)-10(4) AU). Based on different criteria from spectral profiles to literature comparison, we try to associate the maser sites with astrophysical source types. Approximately 51% of the sites exhibit the double-horned 1612 MHz spectra typically emitted from the expanding shells of evolved stars. The separations of the two main velocity features of the expanding shells typically vary between 22 and 38 km s(-1). In addition to this, at least 20% of the maser sites are associated with star-forming regions. While the largest fraction of 1720 MHz maser spots (21 out of 53) is associated with supernova remnants, a significant fraction of the 1720 MHz maser spots (17) are also associated with star-forming regions. We present comparisons to the thermal (CO)-C-13(1-0) emission as well as to other surveys of class II CH3OH and H2O maser emission. The catalogue attempts to present associations to astrophysical sources where available, and the full catalogue is available in electronic form. Conclusions. This OH maser catalogue presents a unique resource of stellar and interstellar masers in the northern hemisphere. It provides the basis for a diverse range of follow-up studies from envelopes around evolved stars to star-forming regions and Supernova remnants.
  •  
8.
  • Dall` Olio, Daria, 1981, et al. (författare)
  • ALMA reveals the magnetic field evolution in the high-mass star forming complex G9.62+0.19
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are as yet largely unexplored. The high-mass star forming region G9.62+0.19 is a well known source, presenting several cores at different evolutionary stages. Aims. We seek to investigate the magnetic field properties at the initial stages of massive star formation. We aim to determine the magnetic field morphology and strength in the high-mass star forming region G9.62+0.19 to investigate its relation to the evolutionary sequence of the cores. Methods. We made use of Atacama Large Millimeter Array (ALMA) observations in full polarisation mode at 1 mm wavelength (Band 7) and we analysed the polarised dust emission. We estimated the magnetic field strength via the Davis-Chandrasekhar-Fermi and structure function methods. Results. We resolve several protostellar cores embedded in a bright and dusty filamentary structure. The polarised emission is clearly detected in six regions: two in the northern field and four in the southern field. Moreover the magnetic field is orientated along the filament and appears perpendicular to the direction of the outflows. The polarisation vectors present ordered patterns and the cores showing polarised emission are less fragmented. We suggest an evolutionary sequence of the magnetic field, and the less evolved hot core exhibits a stronger magnetic field than the more evolved hot core. An average magnetic field strength of the order of 11 mG was derived, from which we obtain a low turbulent-to-magnetic energy ratio, indicating that turbulence does not significantly contribute to the stability of the clump. We report a detection of linear polarisation from thermal line emission, probably from methanol or carbon dioxide, and we tentatively compared linear polarisation vectors from our observations with previous linearly polarised OH masers observations. We also compute the spectral index, column density, and mass for some of the cores. Conclusions. The high magnetic field strength and smooth polarised emission indicate that the magnetic field could play an important role in the fragmentation and the collapse process in the star forming region G9.62+019 and that the evolution of the cores can be magnetically regulated. One core shows a very peculiar pattern in the polarisation vectors, which can indicate a compressed magnetic field. On average, the magnetic field derived by the linear polarised emission from dust, thermal lines, and masers is pointing in the same direction and has consistent strength.
  •  
9.
  • Francis, L., et al. (författare)
  • JOYS: MIRI/MRS spectroscopy of gas-phase molecules from the high-mass star-forming region IRAS 23385+6053
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Space-based mid-infrared (IR) spectroscopy is a powerful tool for the characterization of important star formation tracers of warm gas which are unobservable from the ground. The previous mid-IR spectra of bright high-mass protostars with the Infrared Space Observatory (ISO) in the hot-core phase typically show strong absorption features from molecules such as CO2, C2H2, and HCN. However, little is known about their fainter counterparts at earlier stages. Aims. We aim to characterize the gas-phase molecular features in James Webb Space Telescope Mid-Infrared Instrument Medium Resolution Spectrometer (MIRI/MRS) spectra of the young and clustered high-mass star-forming region IRAS 23385+6053. Methods. Spectra were extracted from several locations in the MIRI/MRS field of view, targeting two mid-IR sources tracing embedded massive protostars as well as three H2 bright outflow knots at distances of >8000 au from the multiple. Molecular features in the spectra were fit with local thermodynamic equilibrium (LTE) slab models, with their caveats discussed in detail. Results. Rich molecular spectra with emission from CO, H2, HD, H2O, C2H2, HCN, CO2, and OH are detected towards the two mid-IR sources. However, only CO and OH are seen towards the brightest H2 knot positions, suggesting that the majority of the observed species are associated with disks or hot core regions rather than outflows or shocks. The LTE model fits to 12CO2, C2H2, HCN emission suggest warm 120a-200 K emission arising from a disk surface around one or both protostars. The abundances of CO2 and C2H2 of ~10âà  à  7 are consistent with previous observations of high-mass protostars. Weak ~500 K H2O emission at ~6a-7 μm is detected towards one mid-IR source, whereas 250a-1050 K H2O absorption is found in the other. The H2O absorption may occur in the disk atmosphere due to strong accretion-heating of the midplane, or in a disk wind viewed at an ideal angle for absorption. CO emission may originate in the hot inner disk or outflow shocks, but NIRSpec data covering the 4.6 μm band head are required to determine the physical conditions of the CO gas, as the high temperatures seen in the MIRI data may be due to optical depth. OH emission is detected towards both mid-IR source positions and one of the shocks, and is likely excited by water photodissociation or chemical formation pumping in a highly non-LTE manner. Conclusions. The observed molecular spectra are consistent with disks having already formed around two protostars in the young IRAS 23385+6054 system. Molecular features mostly appear in emission from a variety of species, in contrast to the more evolved hot core phase protostars which typically show only absorption; however, further observations of young high-mass protostars are needed to disentangle geometry and viewing angle effects from evolution.
  •  
10.
  • Gieser, C., et al. (författare)
  • JOYS: Disentangling the warm and cold material in the high-mass IRAS 23385+6053 cluster
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-mass star formation occurs in a clustered mode where fragmentation is observed from an early stage onward. Young protostars can now be studied in great detail with the recently launched James Webb Space Telescope (JWST). Aims. We study and compare the warm (>100 K) and cold (<100 K) material toward the high-mass star-forming region (HMSFR) IRAS 23385+6053 (IRAS 23385 hereafter) combining high-angular-resolution observations in the mid-infrared (MIR) with the JWST Observations of Young protoStars (JOYS) project and with the NOrthern Extended Millimeter Array (NOEMA) at millimeter (mm) wavelengths at angular resolutions of 0.a2 1.a0. Methods. We investigated the spatial morphology of atomic and molecular species using line-integrated intensity maps. We estimated the temperature and column density of different gas components using H2 transitions (warm and hot component) and a series of CH3CN transitions as well as 3 mm continuum emission (cold component). Results. Toward the central dense core of IRAS 23385, the material consists of relatively cold gas and dust ( 50 K), while multiple outflows create heated and/or shocked H2 and show enhanced temperatures ( 400 K) along the outflow structures. An energetic outflow with enhanced emission knots of [FeII] and [NiII] suggests J-type shocks, while two other outflows have enhanced emission of only H2 and [SI] caused by C-type shocks. The latter two outflows are also more prominent in molecular line emission at mm wavelengths (e.g., SiO, SO, H2CO, and CH3OH). Data of even higher angular resolution are needed to unambiguously identify the outflow-driving sources given the clustered nature of IRAS 23385. While most of the forbidden fine structure transitions are blueshifted, [NeII] and [NeIII] peak at the source velocity toward the MIR source A/mmA2 suggesting that the emission is originating from closer to the protostar. Conclusions. The warm and cold gas traced by MIR and mm observations, respectively, are strongly linked in IRAS 23385. The outflows traced by MIR H2 lines have molecular counterparts in the mm regime. Despite the presence of multiple powerful outflows that cause dense and hot shocks, a cold dense envelope still allows star formation to further proceed. To study and fully understand the spatially resolved MIR properties, a representative sample of low- and high-mass protostars has to be probed using JWST.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy