SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bierkens Marc F. P.) "

Sökning: WFRF:(Bierkens Marc F. P.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blösch, Günter, et al. (författare)
  • Twenty-three unsolved problems in hydrology (UPH) - a community perspective
  • 2019
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 64:10, s. 1141-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
  •  
2.
  • Thorslund, Josefin, et al. (författare)
  • Common irrigation drivers of freshwater salinisation in river basins worldwide
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater salinisation is a growing problem, yet cross-regional assessments of freshwater salinity status and the impact of agricultural and other sectoral uses are lacking. Here, we assess inland freshwater salinity patterns and evaluate its interactions with irrigation water use, across seven regional river basins (401 river sub-basins) around the world, using long-term (1980-2010) salinity observations. While a limited number of sub-basins show persistent salinity problems, many sub-basins temporarily exceeded safe irrigation water-use thresholds and 57% experience increasing salinisation trends. We further investigate the role of agricultural activities as drivers of salinisation and find common contributions of irrigation-specific activities (irrigation water withdrawals, return flows and irrigated area) in sub-basins of high salinity levels and increasing salinisation trends, compared to regions without salinity issues. Our results stress the need for considering these irrigation-specific drivers when developing management strategies and as a key human component in water quality modelling and assessment. Freshwater salinisation is a growing water quality problem, but impacts and drivers across regional to global scales have been lacking. A new assessment of inter-regional freshwater salinisation demonstrates the importance of irrigation as a driver of salinisation.
  •  
3.
  • Gleeson, Tom, et al. (författare)
  • Illuminating water cycle modifications and Earth system resilience in the Anthropocene
  • 2020
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 56:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fresh water—the bloodstream of the biosphere—is at the center of the planetary drama of the Anthropocene. Water fluxes and stores regulate the Earth's climate and are essential for thriving aquatic and terrestrial ecosystems, as well as water, food, and energy security. But the water cycle is also being modified by humans at an unprecedented scale and rate. A holistic understanding of freshwater's role for Earth system resilience and the detection and monitoring of anthropogenic water cycle modifications across scales is urgent, yet existing methods and frameworks are not well suited for this. In this paper we highlight four core Earth system functions of water (hydroclimatic regulation, hydroecological regulation, storage, and transport) and key related processes. Building on systems and resilience theory, we review the evidence of regional‐scale regime shifts and disruptions of the Earth system functions of water. We then propose a framework for detecting, monitoring, and establishing safe limits to water cycle modifications and identify four possible spatially explicit methods for their quantification. In sum, this paper presents an ambitious scientific and policy grand challenge that could substantially improve our understanding of the role of water in the Earth system and cross‐scale management of water cycle modifications that would be a complementary approach to existing water management tools.
  •  
4.
  • Thorslund, Josefin, 1988-, et al. (författare)
  • Salinity impacts on irrigation water-scarcity in food bowl regions of the US and Australia
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Irrigation water use and crop production may be severely limited by both water shortages and increased salinity levels. However, impacts of crop-specific salinity limitations on irrigation water scarcity are largely unknown. We develop a salinity-inclusive water scarcity framework for the irrigation sector, accounting for crop-specific irrigation water demands and salinity tolerance levels and apply it to 29 sub-basins within two food bowl regions; the Central Valley (CV) (California) and the Murray–Darling basin (MDB) (Australia). Our results show that severe water scarcity (levels >0.4) occurs in 23% and 66% of all instances (from >17 000 monthly crop-specific estimates) for the CV and MDB, respectively. The highest water scarcity levels for both regions occurred during their summer seasons. Including salinity and crop-specific salinity tolerance levels further increased water scarcity levels, compared to estimations based on water quantity only, particularly at local sub-basin scales. We further investigate the potential of alleviating water scarcity through diluting surface water with lower saline groundwater resources, at instances where crop salinity tolerance levels are exceeded (conjunctive water use). Results from the CV highlights that conjunctive water use can reduce severe water scarcity levels by up to 67% (from 946 monthly instances where surface water salinity tolerance levels were exceeded). However, groundwater dilution requirements frequently exceed renewable groundwater rates, posing additional risks for groundwater depletion in several sub-basins. By capturing the dynamics of both crops, salinity and conjunctive water use, our framework can support local-regional agricultural and water management impacts, on water scarcity levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy