SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bigiell F.) "

Sökning: WFRF:(Bigiell F.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Blok, W.J.G., et al. (författare)
  • an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities.
  •  
2.
  • Cormier, D., et al. (författare)
  • The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey A ground-based follow-up survey of CO(1-0), CO(2-1), and CO(3-2)
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 564
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Observations of nearby starburst and spiral galaxies have revealed that molecular gas is the driver of star formation. However, some nearby low-metallicity dwarf galaxies are actively forming stars, but CO, the most common tracer of this reservoir, is faint, leaving us with a puzzle about how star formation proceeds in these environments. Aims. We aim to quantify the molecular gas reservoir in a subset of 6 galaxies from the Herschel Dwarf Galaxy Survey with newly acquired CO data and to link this reservoir to the observed star formation activity. Methods. We present CO(1-0), CO(2-1), and CO(3-2) observations obtained at the ATNE Mopra 22-m, APEX, and IRAM 30-m telescopes, as well as [CII] 157 mu m and [OI] 63 mu m observations obtained with the Herschel/PACS spectrometer in the 6 low-metallicity dwarf galaxies: Haro 11, Mrk 1089, Mrk 930, NGC 4861, NGC 625, and UM 311. We derived their molecular gas masses from several methods, including using the CO-to-H-2 conversion factor X-CO (both Galactic and metallicity-scaled values) and dust measurements. The molecular and atomic gas reservoirs were compared to the star formation activity. We also constrained the physical conditions of the molecular clouds using the non-LTE code RADEX and the spectral synthesis code Cloudy. Results. We detect CO in 5 of the 6 galaxies, including first detections in Haro 11 (Z similar to 0.4 Z(circle dot)), Mrk 930 (0.2 Z(circle dot)), and UM 311 (0.5 Z(circle dot)), but CO remains undetected in NGC 4861 (0.2 Z(circle dot)). The CO luminosities are low, while [CII] is bright in these galaxies, resulting in [CII]/CO(1-0) >= 10 000. Our dwarf galaxies are in relatively good agreement with the Schmidt-Kennicutt relation for total gas. They show short molecular depletion timescales, even when considering metallicity-scaled X-CO factors. Those galaxies are dominated by their HI gas, except Haro 11, which has high star formation efficiency and is dominated by ionized and molecular gas. We determine the mass of each ISM phase in Haro 11 using Cloudy and estimate an equivalent X-CO factor that is 10 times higher than the Galactic value. Overall, our results confirm the emerging picture that CO suffers from significant selective photodissociation in low-metallicity dwarf galaxies.
  •  
3.
  • Barnes, Ashley T., et al. (författare)
  • Mother of dragons: A massive, quiescent core in the dragon cloud (IRDC G028.37+00.07)
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Core accretion models of massive star formation require the existence of massive, starless cores within molecular clouds. Yet, only a small number of candidates for such truly massive, monolithic cores are currently known. Aims. Here we analyse a massive core in the well-studied infrared-dark cloud (IRDC) called the dragon clouda'(also known as G028.37+00.07 or Cloud Ca). This core (C2c1) sits at the end of a chain of a roughly equally spaced actively star-forming cores near the center of the IRDC. Methods. We present new high-angular-resolution 1 mm ALMA dust continuum and molecular line observations of the massive core. Results. The high-angular-resolution observations show that this region fragments into two cores, C2c1a and C2c1b, which retain significant background-subtracted masses of 23 M· and 2 M· (31 M· and 6 M· without background subtraction), respectively. The cores do not appear to fragment further on the scales of our highest-angular-resolution images (0.2 , 0.005 pc ∼ 1000 AU). We find that these cores are very dense (nH2 > 106 cm-3) and have only trans-sonic non-thermal motions ( 3s ∼ 1). Together the mass, density, and internal motions imply a virial parameter of
  •  
4.
  • Henshaw, Jonathan D., et al. (författare)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
5.
  • Panessa, M., et al. (författare)
  • The evolution of HCO + in molecular clouds using a novel chemical post-processing algorithm
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:4, s. 6138-6161
  • Tidskriftsartikel (refereegranskat)abstract
    • Modelling the chemistry of molecular clouds is critical to accurately simulating their evolution. To reduce computational cost, 3D simulations generally restrict their chemistry to species with strong heating and cooling effects. Time-dependent information about the evolution of other species is therefore often neglected. We address this gap by post-processing tracer particles in the SILCC-Zoom molecular cloud simulations. Using a chemical network of 39 species and 301 reactions (including freeze-out of CO and H2O) and a novel algorithm to reconstruct a density grid from sparse tracer particle data, we produce time-dependent density distributions for various species. We focus upon the evolution of HCO+, which is a critical formation reactant of CO but is not typically modelled on the fly. We find that ∼90 per cent of the HCO+ content of the cold molecular gas forms in situ around nHCO+ ∼103-104 cm-3, over a time-scale of approximately 1 Myr. The remaining ∼10 per cent forms at high extinction sites, with minimal turbulent mixing out into the less dense gas. We further show that the dominant HCO+ formation pathway is dependent on the visual extinction, with the reaction H3+ + CO contributing 90 per cent of the total HCO+ production above AV, 3D = 3. We produce the very first maps of the HCO+ column density, N(HCO+), and show that it reaches values as high as 1015 cm-2. We find that 50 per cent of the HCO+ mass is located within AV ∼10-30 in a density range of 103.5-104.5 cm-3. Our maps of N(HCO+) are shown to be in good agreement with recent observations of the W49A star-forming region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy