SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Binney James) "

Sökning: WFRF:(Binney James)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Santangelo, James S., et al. (författare)
  • Global urban environmental change drives adaptation in white clover
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375
  • Tidskriftsartikel (refereegranskat)abstract
    • Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
  •  
2.
  • Bland-Hawthorn, Joss, et al. (författare)
  • The GALAH survey and Gaia DR2 : dissecting the stellar disc's phase space by age, action, chemistry, and location
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 486:1, s. 1167-1191
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the second data releases of the European Space Agency Gaia astrometric survey and the high-resolution Galactic Archaeology with HERMES (GALAH) spectroscopic survey to analyse the structure of our Galaxy's disc components. With GALAH, we separate the alpha-rich and alpha-poor discs (with respect to Fe), which are superposed in both position and velocity space, and examine their distributions in action space. We study the distribution of stars in the zV(z) phase plane, for both V-phi and V-R, and recover the remarkable 'phase spiral' discovered by Gaia. We identify the anticipated quadrupole signature in zV(z) of a tilted velocity ellipsoid for stars above and belowtheGalactic plane. By connecting ourwork with earlier studies, we show that the phase spiral is likely to extend well beyond the narrow solar neighbourhood cylinder in which it was found. The phase spiral is a signature of corrugated waves that propagate through the disc, and the associated non-equilibrium phase mixing. The radially asymmetric distribution of stars involved in the phase spiral reveals that the corrugation, which is mostly confined to the alpha-poor disc, grows in z-amplitude with increasing radius. We present new simulations of tidal disturbance of the Galactic disc by the Sagittarius (Sgr) dwarf. The effect on the zV(z) phase plane lasts greater than or similar to 2 Gyr, but a subsequent disc crossing wipes out the coherent structure. We find that the phase spiral was excited less than or similar to 0.5 Gyr ago by an object like Sgr with total mass similar to 3 x 10(10) M-circle dot (stripped down from similar to 5 x 10(10) M-circle dot when it first entered the halo) passing through the plane.
  •  
3.
  • Kunder, Andrea, et al. (författare)
  • THE RADIAL VELOCITY EXPERIMENT (RAVE) : FIFTH DATA RELEASE
  • 2017
  • Ingår i: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the Southern Hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) covering the Ca-triplet region (8410-8795 A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalog of red giant stars in the dereddened color - (J Ks) 0 interval (0.50, 0.85) for which the gravities were calibrated based only on seismology. Further data products for subsamples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the VizieR database.
  •  
4.
  • McMillan, Paul J., et al. (författare)
  • Improved distances and ages for stars common to TGAS and RAVE
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711. ; 477:4, s. 5279-5300
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine parallaxes from the first Gaia data release with the spectrophotometric distance estimation framework for stars in the fifth RAVE survey data release. The combined distance estimates aremore accurate than either determination in isolation - uncertainties are on average two times smaller than for RAVE-only distances (three times smaller for dwarfs), and 1.4 times smaller than TGAS parallax uncertainties (two times smaller for giants). We are also able to compare the estimates from spectrophotometry to those from Gaia, and use this to assess the reliability of both catalogues and improve our distance estimates. We find that the distances to the lowest log g stars are, on average, overestimated and caution that they may not be reliable. We also find that it is likely that the Gaia random uncertainties are smaller than the reported values. As a by-product we derive ages for the RAVE stars, many with relative uncertainties less than 20 per cent. These results for 219 566 RAVE sources have been made publicly available, and we encourage their use for studies that combine the radial velocities provided by RAVE with the proper motions provided by Gaia. A sample that we believe to be reliable can be found by taking only the stars with the flag notification 'flag_any=0'.
  •  
5.
  • Monari, Giacomo, et al. (författare)
  • Distribution functions for resonantly trapped orbits in the Galactic disc
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 471:4, s. 4314-4322
  • Tidskriftsartikel (refereegranskat)abstract
    • The present-day response of a Galactic disc stellar population to a non-axisymmetric perturbation of the potential has previously been computed through perturbation theory within the phase-space coordinates of the unperturbed axisymmetric system. Such an Eulerian linearized treatment, however, leads to singularities at resonances, which prevent quantitative comparisons with data. Here, we manage to capture the behaviour of the distribution function (DF) at a resonance in a Lagrangian approach, by averaging the Hamiltonian over fast angle variables and re-expressing the DF in terms of a new set of canonical actions and angles variables valid in the resonant region. We then follow the prescription of Binney, assigning to the resonant DF the time average along the orbits of the axisymmetric DF expressed in the new set of actions and angles. This boils down to phase-mixing the DF in terms of the new angles, such that the DF for trapped orbits depends only on the new set of actions. This opens the way to quantitatively fitting the effects of the bar and spirals to Gaia data in terms of DFs in action space.
  •  
6.
  • Wojno, Jennifer, et al. (författare)
  • Chemical separation of disc components using RAVE
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 461:4, s. 4246-4255
  • Tidskriftsartikel (refereegranskat)abstract
    • We present evidence from the RAdial Velocity Experiment (RAVE) survey of chemically separated, kinematically distinct disc components in the solar neighbourhood.We apply probabilistic chemical selection criteria to separate our sample into a-low ('thin disc') and a-high ('thick disc') sequences. Using newly derived distances,which will be utilized in the upcoming RAVE DR5, we explore the kinematic trends as a function of metallicity for each of the disc components. For our a-low disc, we find a negative trend in the mean rotational velocity (Vf) as a function of iron abundance ([Fe/H]). We measure a positive gradient ∂Vφ/∂[Fe/H] for the a-high disc, consistent with results from high-resolution surveys.We also find differences between the a-low and a-high discs in all three components of velocity dispersion.We discuss the implications of an a-low, metal-rich population originating from the inner Galaxy, where the orbits of these stars have been significantly altered by radial mixing mechanisms in order to bring them into the solar neighbourhood. The probabilistic separation we propose can be extended to other data sets for which the accuracy in [a/Fe] is not sufficient to disentangle the chemical disc components a priori. For such data sets which will also have significant overlap with Gaia DR1, we can therefore make full use of the improved parallax and proper motion data as it becomes available to investigate kinematic trends in these chemical disc components.
  •  
7.
  • Wojno, Jennifer, et al. (författare)
  • Correlations between age, kinematics, and chemistry as seen by the RAVE survey
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:4, s. 5612-5624
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of 7.5 < R(kpc) < 9.0, using a sample of ~12 000 intermediate-mass (FGK) turn-offstars observed with the RAdial Velocity Experiment (RAVE) survey. The kinematics of this sample are determined using radial velocity measurements from RAVE, and parallax and proper motion measurements from the Tycho-Gaia Astrometric Solution (TGAS). In addition, ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young (0 < τ < 3 Gyr) and old (8 < τ < 13 Gyr) populations, and then consider different metallicity bins for each of these age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius (∂V R /∂R) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For ∂V Φ /∂R, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.
  •  
8.
  • Wojno, Jennifer, et al. (författare)
  • The selection function of the RAVE survey
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 468:3, s. 3368-3380
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterize the selection function of RAdial Velocity Experiment (RAVE) using 2 Micron All Sky Survey (2MASS) as our underlying population, which we assume represents all stars that could have potentially been observed.We evaluate the completeness fraction as a function of position, magnitude and colour in two ways: first, on a field-by-field basis, and second, in equal-size areas on the sky. Then, we consider the effect of the RAVE stellar parameter pipeline on the final resulting catalogue, which in principle limits the parameter space over which our selection function is valid. Our final selection function is the product of the completeness fraction and the selection function of the pipeline. We then test if the application of the selection function introduces biases in the derived parameters. To do this, we compare a parent mock catalogue generated using GALAXIA with a mock-RAVE catalogue where the selection function of RAVE has been applied. We conclude that for stars brighter than I = 12, between 4000 < Teff < 8000K and 0.5 < log g < 5.0, RAVE is kinematically and chemically unbiased with respect to expectations from GALAXIA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy