SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blamire A. M.) "

Sökning: WFRF:(Blamire A. M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Scott, J., et al. (författare)
  • Prospective cohort study of early biosignatures of response to lithium in bipolar-I-disorders: overview of the H2020-funded R-LiNK initiative
  • 2019
  • Ingår i: International Journal of Bipolar Disorders. - : Springer Science and Business Media LLC. - 2194-7511. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Lithium is recommended as a first line treatment for bipolar disorders. However, only 30% of patients show an optimal outcome and variability in lithium response and tolerability is poorly understood. It remains difficult for clinicians to reliably predict which patients will benefit without recourse to a lengthy treatment trial. Greater precision in the early identification of individuals who are likely to respond to lithium is a significant unmet clinical need. Structure The H2020-funded Response to Lithium Network (R-LiNK; ) will undertake a prospective cohort study of over 300 individuals with bipolar-I-disorder who have agreed to commence a trial of lithium treatment following a recommendation by their treating clinician. The study aims to examine the early prediction of lithium response, non-response and tolerability by combining systematic clinical syndrome subtyping with examination of multi-modal biomarkers (or biosignatures), including omics, neuroimaging, and actigraphy, etc. Individuals will be followed up for 24 months and an independent panel will assess and classify each participants' response to lithium according to predefined criteria that consider evidence of relapse, recurrence, remission, changes in illness activity or treatment failure (e.g. stopping lithium; new prescriptions of other mood stabilizers) and exposure to lithium. Novel elements of this study include the recruitment of a large, multinational, clinically representative sample specifically for the purpose of studying candidate biomarkers and biosignatures; the application of lithium-7 magnetic resonance imaging to explore the distribution of lithium in the brain; development of a digital phenotype (using actigraphy and ecological momentary assessment) to monitor daily variability in symptoms; and economic modelling of the cost-effectiveness of introducing biomarker tests for the customisation of lithium treatment into clinical practice. Also, study participants with sub-optimal medication adherence will be offered brief interventions (which can be delivered via a clinician or smartphone app) to enhance treatment engagement and to minimize confounding of lithium non-response with non-adherence. Conclusions The paper outlines the rationale, design and methodology of the first study being undertaken by the newly established R-LiNK collaboration and describes how the project may help to refine the clinical response phenotype and could translate into the personalization of lithium treatment.
  •  
2.
  • Anders, S., et al. (författare)
  • European roadmap on superconductive electronics - Status and perspectives
  • 2010
  • Ingår i: Physica C: Superconductivity and its Applications. - : Elsevier BV. - 0921-4534. ; 470:23-24, s. 2079-2126
  • Tidskriftsartikel (refereegranskat)abstract
    • For four decades semiconductor electronics has followed Moore's law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 mu W per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Phi(0). The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit 'Volt' is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals. SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by 'transition-edge' bolo-meters, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: - Ultra-sensitive sensing and imaging. - Quantum measurement instrumentation. - Advanced analogue-to-digital converters. - Superconductive electronics technology.
  •  
3.
  • Finkelmeyer, A., et al. (författare)
  • Grey and white matter differences in Chronic Fatigue Syndrome – A voxel-based morphometry study
  • 2018
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 17, s. 24-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Investigate global and regional grey and white matter volumes in patients with Chronic Fatigue Syndrome (CFS) using magnetic resonance imaging (MRI) and recent voxel-based morphometry (VBM) methods. Methods Forty-two patients with CFS and thirty healthy volunteers were scanned on a 3-Tesla MRI scanner. Anatomical MRI scans were segmented, normalized and submitted to a VBM analysis using randomisation methods. Group differences were identified in overall segment volumes and voxel-wise in spatially normalized grey matter (GM) and white matter (WM) segments. Results Accounting for total intracranial volume, patients had larger GM volume and lower WM volume. The voxel-wise analysis showed increased GM volume in several structures including the amygdala and insula in the patient group. Reductions in WM volume in the patient group were seen primarily in the midbrain, pons and right temporal lobe. Conclusion Elevated GM volume in CFS is seen in areas related to processing of interoceptive signals and stress. Reduced WM volume in the patient group partially supports earlier findings of WM abnormalities in regions of the midbrain and brainstem. © 2017 The Author(s)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy