SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bosch Ramon V.) "

Sökning: WFRF:(Bosch Ramon V.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abe, H., et al. (författare)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
3.
  • Acciari, V. A., et al. (författare)
  • Radio Imaging of the Very-High-Energy gamma-Ray Emission Region in the Central Engine of a Radio Galaxy
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5939, s. 444-448
  • Tidskriftsartikel (refereegranskat)abstract
    • The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
  •  
4.
  • De Angelis, A., et al. (författare)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Tidskriftsartikel (refereegranskat)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
5.
  • Aleksic, J., et al. (författare)
  • DETECTION OF VERY HIGH ENERGY gamma-RAY EMISSION FROM THE PERSEUS CLUSTER HEAD-TAIL GALAXY IC 310 BY THE MAGIC TELESCOPES
  • 2010
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 723:2, s. l207-L212
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the detection with the MAGIC telescopes of very high energy (VHE) gamma-rays from IC 310, a head-tail radio galaxy in the Perseus galaxy cluster, observed during the interval 2008 November to 2010 February. The Fermi satellite has also detected this galaxy. The source is detected by MAGIC at a high statistical significance of 7.6 sigma in 20.6 hr of stereo data. The observed spectral energy distribution is flat with a differential spectral index of -2.00 +/- 0.14. The mean flux above 300 GeV, between 2009 October and 2010 February, (3.1 +/- 0.5) x 10(-12) cm(-2) s(-1), corresponds to (2.5 +/- 0.4)% of Crab Nebula units. Only an upper limit, of 1.9% of Crab Nebula units above 300 GeV, was obtained with the 2008 data. This, together with strong hints (>3 sigma) of flares in the middle of 2009 October and November, implies that the emission is variable. The MAGIC results favor a scenario with the VHE emission originating from the inner jet close to the central engine. More complicated models than a simple one-zone synchrotron self-Compton (SSC) scenario, e. g., multi-zone SSC, external Compton, or hadronic, may be required to explain the very flat spectrum and its extension over more than three orders of magnitude in energy.
  •  
6.
  • Castellsague, Xavier, et al. (författare)
  • Prospective seroepidemiologic study on the role of Human Papillomavirus and other infections in cervical carcinogenesis: Evidence from the EPIC cohort
  • 2014
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 135:2, s. 440-452
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate prospectively the association between serological markers of selected infections, including HPV, and risk of developing cervical cancer (CC) and precancer, we performed a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) study that included 184 cases of invasive CC (ICC), 425 cases of cervical intraepithelial neoplasia (CIN) grade 3 or carcinoma in situ (CIS), and 1,218 matched control women. At enrollment participants completed lifestyle questionnaires and provided sera. Subjects were followed-up for a median of 9 years. Immunoassays were used to detect serum antibodies to Human Herpes Virus 2 (HHV-2), Chlamydia trachomatis (CT), Chlamydia pneumoniae, L1 proteins of mucosal and cutaneous HPV types, E6/E7 proteins of HPV16/18, as well as to four polyomaviruses. Adjusted odds ratios (OR) [and 95% confidence intervals (CI)] for CIN3/CIS and ICC risk were respectively: 1.6 (1.2-2.0) and 1.8 (1.1-2.7) for L1 seropositivity to any mucosal HPV type, 1.0 (0.4-2.4) and 7.4 (2.8-19.7) for E6 seropositivity to HPV16/18, 1.3 (0.9-1.9) and 2.3 (1.3-4.1) for CT seropositivity, and 1.4 (1.0-2.0) and 1.5 (0.9-2.6) for HHV-2 seropositivity. The highest OR for ICC was observed for HPV16 E6 seropositivity [OR=10.2 (3.3-31.1)]. Increasing number of sexually transmitted infections (STIs) was associated with increasing risk. Non-STIs were not associated with CC risk. In conclusion, this large prospective study confirms the important role of HPV and a possible contribution of CT and HHV-2 in cervical carcinogenesis. It further identifies HPV16 E6 seropositivity as the strongest marker to predict ICC well before disease development. What's New? Limited data are available from prospective studies concerning the role of past exposure to human papillomavirus (HPV) and other infections in cervical carcinogenesis. This study assessed associations between cervical cancer and pre-cancer and serological markers of exposure to mucosal and cutaneous HPVs, Chlamydia trachomatis (CT), Chlamydia pneumonia, human herpes virus-2 (HHV-2), and polyomaviruses using a nested case-control design within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Associations were found for mucosal HPVs, CT, and HHV-2. A greater number of sexually transmitted diseases further raised the risk of cervical cancer.
  •  
7.
  • Del Palacio, Santiago, 1990, et al. (författare)
  • Evidence for non-thermal X-ray emission from the double Wolf-Rayet colliding-wind binary Apep
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive colliding-wind binaries (CWBs) can be non-thermal sources. The emission produced in their wind-collision region (WCR) encodes information of both the shock properties and the relativistic electrons accelerated in them. The recently discovered system Apep, a unique massive system hosting two Wolf-Rayet stars, is the most powerful synchrotron radio emitter among the known CWBs. It is an exciting candidate in which to investigate the non-thermal processes associated with stellar wind shocks. Aims. We intend to break the degeneracy between the relativistic particle population and the magnetic field strength in the WCR of Apep by probing its hard X-ray spectrum, where inverse-Compton (IC) emission is expected to dominate. Methods. We observed Apep with NuSTAR for 60 ks and combined this with a reanalysis of a deep archival XMM-Newton observation to better constrain the X-ray spectrum. We used a non-thermal emission model to derive physical parameters from the results. Results. We detect hard X-ray emission consistent with a power-law component from Apep. This is compatible with IC emission produced in the WCR for a magnetic field of ≈ 105-190 mG, corresponding to a magnetic-to-thermal pressure ratio in the shocks of ≈ 0.007-0.021, and a fraction of ∼1.5 × 10-4 of the total wind kinetic power being transferred to relativistic electrons. Conclusions. The non-thermal emission from a CWB is detected for the first time in radio and at high energies. This allows us to derive the most robust constraints so far for the particle acceleration efficiency and magnetic field intensity in a CWB, reducing the typical uncertainty of a few orders of magnitude to just within a factor of a few. This constitutes an important step forward in our characterisation of the physical properties of CWBs.
  •  
8.
  • Martinez, J. R., et al. (författare)
  • Probing the non-thermal physics of stellar bow shocks using radio observations
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive runaway stars produce bow shocks in the interstellar medium. Recent observations revealed radio emission from a few of these objects, but the origin of this radiation remains poorly understood. Aims. We aim to interpret this radio emission and assess under which conditions it could be either thermal (free-free) or non-thermal (synchrotron), and how to use the observational data to infer physical properties of the bow shocks. Methods. We used an extended non-thermal emission model for stellar bow shocks for which we incorporated a consistent calculation of the thermal emission from the forward shock. We fitted this model to the available radio data (spectral and intensity maps), including largely unexplored data at low frequencies. In addition, we used a simplified one-zone model to estimate the gamma-ray emission from particles escaping the bow shocks. Results. We can only explain the radio data from the best sampled systems (BD +43 degrees 3654 and BD +60 degrees 2522) assuming a hard electron energy distribution below similar to 1 GeV, a high efficiency of conversion of (shocked) wind kinetic power into relativistic electrons (similar to 1 5%), and a relatively high magnetic-to-thermal pressure ratio of eta(B) similar to 0.2. In the other systems, the interpretation of the observed flux density is more ambiguous, although a non-thermal scenario is also favoured. We also show how complementary observations at other frequencies can allow us to place stronger constraints in the model. We also estimated the gamma-ray fluxes from the HII regions around the bow shocks of BD +43 degrees 3654 and BD +60 degrees 2522, and obtained luminosities at GeV energies of similar to 10(33) erg s(-1) and 10(32) erg s(-1), respectively, under reasonable assumptions. Conclusions. Stellar bow shocks can potentially be very e fficient particle accelerators. This work provides multi-wavelength predictions of their emission and demonstrates the key role of low-frequency radio observations in unveiling particle acceleration processes. The prospects of detections with next-generation observatories such as SKA and ngVLA are very promising. Finally, BD +43 degrees 3654 may be detected in GeV in the near future, while bow shocks in general may turn out to be non-negligible sources of (at least leptonic) low-energy cosmic rays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy