SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bottyan L.) "

Sökning: WFRF:(Bottyan L.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bottyán, L., et al. (författare)
  • GINA—A polarized neutron reflectometer at the Budapest Neutron Centre
  • 2013
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics. - 0034-6748 .- 1089-7623. ; 84:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed “Grazing Incidence Neutron Apparatus” at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm2 sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10−5 have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [62Ni/natNi]5 isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.
  •  
2.
  • Khaydukov, Yu. N., et al. (författare)
  • Magnetic Proximity Effects in V/Fe Superconductor/Ferromagnet Single Bilayer Revealed by Waveguide-Enhanced Polarized Neutron Reflectometry
  • 2011
  • Ingår i: Journal of Superconductivity and Novel Magnetism. - : Springer. - 1557-1939 .- 1557-1947. ; 24:1-2, s. 961-968
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarized neutron reflectometry is used to study the magnetic proximity effect in a superconductor/ferromagnet (SC/FM) system of composition Cu(32 nm)/ V(40 nm)/Fe(1 nm)/MgO. In contrast to previous studies, here a single SC/FM bilayer, is studied and multilayer artefacts are excluded. The necessary signal enhancement is achieved by waveguide resonance, i.e., preparing the V(40 nm)/Fe(1 nm) SC/FM bilayer sandwiched by the highly reflective MgO substrate and Cu top layer, respectively. A new magnetic state of the system was observed at temperatures below 0.7TC manifested in a systematic change in the height and width of the waveguide resonance peak. Upon increasing the temperature from 0.7TC to TC, a gradual decay of this state is observed, accompanied by a 5% growth of the diffuse scattering. This behavior can be explained in a natural way by the polarization of the superconducting electrons upon the SC transition, i.e., an appearance of additional induced magnetization within the SC, due to the proximity of the FM layer.
  •  
3.
  • Nagy, Bela, 1985-, et al. (författare)
  • 4-bounce neutron polarizer for reflectometry applications
  • 2018
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 89:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup. Published by AIP Publishing.
  •  
4.
  • Nagy, Bela, 1985-, et al. (författare)
  • On the explanation of the paramagnetic Meissner effect in superconductor/ferromagnet heterostructures
  • 2016
  • Ingår i: Europhysics letters. - : Institute of Physics (IOP). - 0295-5075 .- 1286-4854. ; 116:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase of the magnetic moment in superconductor/ferromagnet (S/F) bilayers V(40 nm)/F (F = Fe(1, 3 nm), Co(3 nm), Ni(3 nm)) was observed using SQUID magnetometry upon cooling below the superconducting transition temperature TC in magnetic fields of 10 Oe to 50 Oe applied parallel to the sample surface. A similar increase, often called the paramagnetic Meissner effect (PME), was observed before in various superconductors and superconductor/ferromagnet systems. To explain the PME effect in the presented S/F bilayers a model based on a row of vortices located at the S/F interface is proposed. According to the model the magnetic moment induced below TC consists of the paramagnetic contribution of the vortex cores and the diamagnetic contribution of the vortex-free region of the S layer. Since the thickness of the S layer is found to be 3-4 times less than the magnetic-field penetration depth, this latter diamagnetic contribution is negligible. The model correctly accounts for the sign, the approximate magnitude and the field dependence of the paramagnetic and the Meissner contributions of the induced magnetic moment upon passing the superconducting transition of a ferromagnet/superconductor bilayer. Copyright (C) EPLA, 2016.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy