SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bourassa A.E.) "

Sökning: WFRF:(Bourassa A.E.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hubert, D., et al. (författare)
  • Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:6, s. 2497-2534
  • Tidskriftsartikel (refereegranskat)abstract
    • The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of 14 limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20 and 40km the satellite ozone measurement biases are smaller than ±5%, the short-term variabilities are less than 5-12% and the drifts are at most ±5%decade-1 (or even ±3%decade-1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY) and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
  •  
2.
  • Bourassa, A. E., et al. (författare)
  • Fast NO2 retrievals from Odin-OSIRIS limb scatter measurements
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:5, s. 965-972
  • Tidskriftsartikel (refereegranskat)abstract
    • The feasibility of retrieving vertical profiles of NO2 from space-based measurements of limb scattered sunlight has been demonstrated using several different data sets since the 1980's. The NO2 data product routinely retrieved from measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument onboard the Odin satellite uses a spectral fitting technique over the 437 to 451 nm range, over which there are 36 individual wavelength measurements. In this work we present a proof of concept technique for the retrieval of NO2 using only 4 of the 36 OSIRIS measurements in this wavelength range, which reduces the computational cost by almost an order of magnitude. The method is an adaptation of a triplet analysis technique that is currently used for the OSIRIS retrievals of ozone at Chappuis band wavelengths. The results obtained are shown to be in very good agreement with the spectral fit method, and provide an important alternative for applications where the computational burden is very high. Additionally this provides a baseline for future instrument design in terms of cost effectiveness and reducing spectral range requirements.
  •  
3.
  •  
4.
  • Gattinger, R. L., et al. (författare)
  • H Balmer lines in terrestrial aurora : Historical record and new observations by OSIRIS on Odin
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A09306-
  • Tidskriftsartikel (refereegranskat)abstract
    • The H Balmer emissions were first identified in terrestrial aurora by Vegard (1939). The earliest photographic spectral observations are reviewed. In the subsequent decade, the intensity ratios for H alpha, H beta, and H gamma were measured, and the well-known line broadening and blue shift were established. Recently, the H alpha, H gamma, H delta, and H epsilon features have been measured by OSIRIS on Odin. The Balmer components are resolved from other auroral features using sets of synthetic spectra. The measured intensity ratios are in good agreement with an extensive set of published model calculations. The presented observations are in the polar region averaged over limb tangent altitudes from 100 to 105 km, approximately perpendicular to the terrestrial magnetic field lines, for this geometry showing Doppler broadening without obvious Doppler shifts. The OSIRIS-measured full-width at half-height of the Ha feature is 2.2 nm corresponding to an H atom velocity of 500 km s(-1) and energy approximately 1.3 keV.
  •  
5.
  • Kasai, Y., et al. (författare)
  • Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:9, s. 2311-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
  •  
6.
  • Li, Anqi, 1990, et al. (författare)
  • 11-year solar cycle influence on OH (3-1) nightglow observed by OSIRIS
  • 2022
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826. ; 229
  • Tidskriftsartikel (refereegranskat)abstract
    • In the mesosphere, the vibrationally excited hydroxyl layer is sensitive to changes in incoming solar flux. An enhanced photodissociation of molecular oxygen will lead to more atomic oxygen production, thus we expect the OH layer emission rate to be positively with the Lyman-α flux and the emission height to be negatively correlated. The Optical Spectrograph and InfraRed Imager System (OSIRIS) has recorded the Meinel band centred at 1.53 μm from 2001 to 2015. In this study, we show how the 11-year solar cycle signature manifests itself in this data set, in terms of OH zenith emission rate and emission height. As expected, the emission height is negatively correlated with the Lyman-α flux at all latitudes. The zenith emission rate is positively correlated with the Lyman-α flux at most latitudes except near the equator. By the means of a time dependent photochemical model, we show that the changing local time sampling of the Odin satellite was the cause of the observed distortion of the solar cycle signature near the equator.
  •  
7.
  • Li, Anqi, 1990, et al. (författare)
  • Retrieval of daytime mesospheric ozone using OSIRIS observations of O2 (a1Δg) emission
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:11, s. 6215-6236
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is distributed under the Creative Commons Attribution 4.0 License. Improving knowledge of the ozone global distributions in the mesosphere-lower thermosphere (MLT) is a crucial step in understanding the behaviour of the middle atmosphere. However, the concentration of ozone under sunlit conditions in the MLT is often so low that its measurement requires instruments with very high sensitivity. Fortunately, the bright oxygen airglow can serve as a proxy to retrieve the daytime ozone density indirectly, due to the strong connection to ozone photolysis in the Hartley band. The OSIRIS IR imager (hereafter, IRI), one of the instruments on the Odin satellite, routinely measures the oxygen infrared atmospheric band (IRA band) at 1.27 μm. In this paper, we will primarily focus on the detailed description of the steps done for retrieving the calibrated IRA band limb radiance (with <10 % random error), the volume emission rate of O2 ( a 1i"g) (with <25 % random error) and finally the ozone number density (with <20 % random error). This retrieval technique is applied to a 1-year sample from the IRI dataset. The resulting product is a new ozone dataset with very tight along-track sampling distance (<20 km). The feasibility of the retrieval technique is demonstrated by a comparison of coincident ozone measurements from other instruments aboard the same spacecraft, as well as zonal mean and monthly average comparisons between Odin-OSIRIS (both spectrograph and IRI), Odin-SMR and Envisat-MIPAS. We find that IRI appears to have a positive bias of up to 25 % below 75 km, and up to 50 % in some regions above. We attribute these differences to uncertainty in the IRI calibration as well as uncertainties in the photochemical constants. However, the IRI ozone dataset is consistent with the compared dataset in terms of the overall atmospheric distribution of ozone between 50 and 100 km. If the origin of the bias can be identified before processing the entire dataset, this will be corrected and noted in the dataset description. The retrieval technique described in this paper can be further applied to all the measurements made throughout the 19 year mission, leading to a new, long-term high-resolution ozone dataset in the middle atmosphere.
  •  
8.
  • McLinden, C. A., et al. (författare)
  • OSIRIS: A Decade of Scattered Light
  • 2012
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007 .- 1520-0477. ; 93:12, s. 1845-1863
  • Tidskriftsartikel (refereegranskat)abstract
    • Into year 11 of a 2-yr mission, OSIRIS is redefining how limb-scattered sunlight can be used to probe the atmosphere, even into the upper troposphere.
  •  
9.
  • Rahpoe, N., et al. (författare)
  • Relative drifts and biases between six ozone limb satellite measurements from the last decade
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:10, s. 4369-4381
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of European Space Agency's (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA's Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA's third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3 % decade-1 (1s). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere.
  •  
10.
  • Sheese, P. E., et al. (författare)
  • Validation of ACE-FTS version 3.5 NO y species profiles using correlative satellite measurements
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:12, s. 5781-5810
  • Tidskriftsartikel (refereegranskat)abstract
    • The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2 + NO3 + 2 x N2O5 + HNO3 + HNO4 + ClONO2 + BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments - GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy