SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burström Gustav) "

Sökning: WFRF:(Burström Gustav)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burström, Gustav (författare)
  • Augmented navigation
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Spinal fixation procedures have the inherent risk of causing damage to vulnerable anatomical structures such as the spinal cord, nerve roots, and blood vessels. To prevent complications, several technological aids have been introduced. Surgical navigation is the most widely used, and guides the surgeon by providing the position of the surgical instruments and implants in relation to the patient anatomy based on radiographic images. Navigation can be extended by the addition of a robotic arm to replace the surgeon’s hand to increase accuracy. Another line of surgical aids is tissue sensing equipment, that recognizes different tissue types and provides a warning system built into surgical instruments. All these technologies are under continuous development and the optimal solution is yet to be found. The aim of this thesis was to study the use of Augmented Reality (AR), Virtual Reality (VR), Artificial Intelligence (AI), and tissue sensing technology in spinal navigation to improve precision and prevent surgical errors. The aim of Paper I was to develop and validate an algorithm for automatizing the intraoperative planning of pedicle screws. An AI algorithm for automatic segmentation of the spine, and screw path suggestion was developed and evaluated. In a clinical study of advanced deformity cases, the algorithm could provide correct suggestions for 86% of all pedicles—or 95%, when cases with extremely altered anatomy were excluded. Paper II evaluated the accuracy of pedicle screw placement using a novel augmented reality surgical navigation (ARSN) system, harboring the above-developed algorithm. Twenty consecutively enrolled patients, eligible for deformity correction surgery in the thoracolumbar region, were operated on using the ARSN system. In this cohort, we found a pedicle screw placement accuracy of 94%, as measured according to the Gertzbein grading scale. The primary goal of Paper III was to validate an extension of the ARSN system for placing pedicle screws using instrument tracking and VR. In a porcine cadaver model, it was demonstrated that VR instrument tracking could successfully be integrated with the ARSN system, resulting in pedicle devices placed within 1.7 ± 1.0 mm of the planed path. Paper IV examined the feasibility of a robot-guided system for semi-automated, minimally invasive, pedicle screw placement in a cadaveric model. Using the robotic arm, pedicle devices were placed within 0.94 ± 0.59 mm of the planned path. The use of a semi-automated surgical robot was feasible, providing a higher technical accuracy compared to non-robotic solutions. Paper V investigated the use of a tissue sensing technology, diffuse reflectance spectroscopy (DRS), for detecting the cortical bone boundary in vertebrae during pedicle screw insertions. The technology could accurately differentiate between cancellous and cortical bone and warn the surgeon before a cortical breach. Using machine learning models, the technology demonstrated a sensitivity of 98% [range: 94-100%] and a specificity of 98% [range: 91-100%]. In conclusion, several technological aids can be used to improve accuracy during spinal fixation procedures. In this thesis, the advantages of adding AR, VR, AI and tissue sensing technology to conventional navigation solutions were studied.
  •  
2.
  • Burström, Gustav, et al. (författare)
  • Optical Methods for Brain Tumor Detection : A Systematic Review
  • 2024
  • Ingår i: Journal of Clinical Medicine. - : MDPI. - 2077-0383. ; 13:9
  • Forskningsöversikt (refereegranskat)abstract
    • Background: In brain tumor surgery, maximal tumor resection is typically desired. This is complicated by infiltrative tumor cells which cannot be visually distinguished from healthy brain tissue. Optical methods are an emerging field that can potentially revolutionize brain tumor surgery through intraoperative differentiation between healthy and tumor tissues.Methods: This study aimed to systematically explore and summarize the existing literature on the use of Raman Spectroscopy (RS), Hyperspectral Imaging (HSI), Optical Coherence Tomography (OCT), and Diffuse Reflectance Spectroscopy (DRS) for brain tumor detection. MEDLINE, Embase, and Web of Science were searched for studies evaluating the accuracy of these systems for brain tumor detection. Outcome measures included accuracy, sensitivity, and specificity.Results: In total, 44 studies were included, covering a range of tumor types and technologies. Accuracy metrics in the studies ranged between 54 and 100% for RS, 69 and 99% for HSI, 82 and 99% for OCT, and 42 and 100% for DRS.Conclusions: This review provides insightful evidence on the use of optical methods in distinguishing tumor from healthy brain tissue.
  •  
3.
  • Kaijser, Magnus, et al. (författare)
  • Two years of neurosurgical intraoperative MRI in Sweden : evaluation of use and costs
  • 2024
  • Ingår i: Acta Neurochirurgica. - : Springer. - 0001-6268 .- 0942-0940. ; 166:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The current shortage of radiology staff in healthcare provides a challenge for departments all over the world. This leads to more evaluation of how the radiology resources are used and a demand to use them in the most efficient way. Intraoperative MRI is one of many recent advancements in radiological practice. If radiology staff is performing intraoperative MRI at the operation ward, they may be impeded from performing other examinations at the radiology department, creating costs in terms of exams not being performed. Since this is a kind of cost whose importance is likely to increase, we have studied the practice of intraoperative MRI in Sweden.METHODS: The study includes data from the first four hospitals in Sweden that installed MRI scanners adjacent to the operating theaters. In addition, we included data from Karolinska University Hospital in Solna where intraoperative MRI is carried out at the radiology department.RESULTS: Scanners that were moved into the operation theater and doing no or few other scans were used 11-12% of the days. Stationary scanners adjacent to the operation room were used 35-41% of the days. For scanners situated at the radiology department doing intraoperative scans interspersed among all other scans, the proportion was 92%.CONCLUSION: Our study suggests that performing exams at the radiology department rather than at several locations throughout the hospital may be an efficient approach to tackle the simultaneous trends of increasing demands for imaging and increasing staff shortages at radiology departments.
  •  
4.
  • Kristiansson, Helena, et al. (författare)
  • Dura Management Strategies in the Surgical Treatment of Adult Chiari Type I Malformation : A Retrospective, Multicenter, Population-Based Parallel Cohort Case Series
  • 2022
  • Ingår i: Operative Neurosurgery. - : Lippincott Williams & Wilkins. - 2332-4252 .- 2332-4260. ; 23:4, s. 304-311
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Symptomatic Chiari I malformation is treated with suboccipital decompression and C1 laminectomy. However, whether the dura should be opened (durotomy) or enlarged with a graft (duraplasty) remains unclear. OBJECTIVE: To compare outcomes in adult Chiari I malformation patients treated with duraplasty, durotomy, or without dural opening ("mini-decompression").METHODS: A retrospective, multicenter, population-based cohort study was performed of all adult patients surgically treated for a Chiari I malformation at 3 regional neurosurgical centers between 2005 and 2017. Three different dura management strategies were favored by the participating hospitals, with data stratified accordingly. The primary outcome was measured using the Chicago Chiari Outcome Scale (CCOS), dichotomized into favorable (CCOS >= 13) or unfavorable (CCOS <= 12). Propensity score matching was used to adjust for potential confounders in outcome comparisons.RESULTS: In total, 318 patients were included, of whom 52% were treated with duraplasty, 37% with durotomy, and 11% with mini-decompression. In total, 285 (90%) showed a favorable surgical outcome (CCOS >= 13). Duraplasty was associated with more favorable CCOS and shorter hospital stay compared with durotomy, both in unadjusted (93% vs 84%. P = .018 and 6.0 vs 8.0 days, P < .001) and adjusted analyses (92% vs 84%, P = .044 and 6.0 vs 8.0 days, P < .001). Mini-decompression was excluded from the adjusted analyses because of its small sample size.CONCLUSION: In this study of adult Chiari I malformation, posterior fossa decompression with duraplasty was associated with more favorable postoperative outcome, as determined by the CCOS, compared with posterior fossa decompression with durotomy alone.
  •  
5.
  • Simon, Daniel, et al. (författare)
  • An organic electronic biomimetic neuron enable sauto-regulated neuro modulation
  • 2015
  • Ingår i: Biosensors & bioelectronics. - : Elsevier BV. - 0956-5663 .- 1873-4235. ; 71, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Current therapies for neurological disorders are based on traditional medication and electric stimulation. Here, we present an organic electronicbiomimetic neuron, with the capacity to precisely intervene with the underlying malfunctioning signalling pathway using endogenous substances. The fundamental function of neurons, defined as chemical-to-electrical-to-chemical signal transduction, is achieved by connecting enzyme-based amperometric biosensors and organic electronic ion pumps. Selective biosensors transduce chemical signals into an electric current, which regulates electrophoretic delivery of chemical substances without necessitating liquid flow. Biosensors detected neurotransmitters in physiologically relevant ranges of 5–80 µM, showing linear response above 20 µm with approx. 0.1 nA/µM slope. When exceeding defined threshold concentrations, biosensor output signals, connected via custom hardware/software, activated local or distant neurotransmitter delivery from the organic electronic ion pump. Changes of 20 µM glutamate or acetylcholinetriggered diffusive delivery of acetylcholine, which activated cells via receptor-mediated signalling. This was observed in real-time by single-cell ratiometric Ca2+ imaging. The results demonstrate the potential of the organic electronic biomimetic neuron in therapies involving long-range neuronal signalling by mimicking the function of projection neurons. Alternatively, conversion of glutamate-induced descending neuromuscular signals into acetylcholine-mediated muscular activation signals may be obtained, applicable for bridging injured sites and active prosthetics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy