SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Caffé Romeo A.) "

Sökning: WFRF:(Caffé Romeo A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Linton, Jonathan D., et al. (författare)
  • Flow of energy in the outer retina in darkness and in light
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 107:19, s. 8599-8604
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor's synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.
  •  
2.
  • Ahuja, Sat pal, et al. (författare)
  • Physiopathology of retinal degeneration in rd1 mouse model of retinitis pigmentosa : TGF-Β1, proteinases and oxidative stress mechanisms
  • 2009
  • Ingår i: Retinal Degeneration: Causes, Diagnosis and Treatment. - 9781607410072 ; , s. 1-41
  • Bokkapitel (refereegranskat)abstract
    • The rd1 (retinal degeneration) mouse retina shows degeneration homologous to a form of retinitis pigmentosa with a rapid loss of rod photoreceptors and deficiency of retinal blood vessels. Due to Pde6brd1 gene mutation, β subunit of phosphodiesterase (PDE) of rd1 retina has an inactive PDE which elevates cGMP and Ca2+ ions level. In vitro retinal explants provide a system close to the in vivo situation, so both approaches were used to compare the status of oxidative stress, transforming growth factor-β1 (TGF-β1), sialylation, galactosylation of proteoglycans, and different proteinases-endogenous inhibitors systems participating in extracellular matrix (ECM) remodeling/degeneration and programmed cell death (PCD)/apoptosis in wt and rd1 mouse retinas. Proteins and desialylated sulfated glucosaminoglycan parts of proteoglycans in ECM of rd1 retina were, respectively, decreased and increased due to enhanced activities of proteinases. Desialylation increases the susceptibility of cells to phoagocytosis/apoptosis, decreased neurogenesis and faulty guidance cues for synaptogenesis. In vivo activities of total proteinases, matrix metalloproteinase-9 (MMP-9) and cathepsin B were increased in rd1 retina on postnatal day 14 (PN14), -21 and -28, due to relatively lower levels of tissue inhibitor of MMPs (TIMP-1) and cystatin C, respectively. This corresponded with increased in vitro secretion of these proteinases by rd1 retina. Cells including end-feet of Mueller cells in degenerating rd1 retina showed intense immunolabeling for MMP-9, MMP-2/TIMP-1, TIMP-2 and cathepsin B/cystatin C, and proteinases pool was increased by Mueller cells. Intense immunolabeling of ganglion cell (RGC) layer for cathepsin B and of inner-plexiform layer of both PN2/PN7 rd1 and wt retinas indicated importance of cathepsin B in synaptogenesis and PCD of RGC. Increased levels of TGF-β1 in vitro transiently increased the secretion of MMPs and cathepsins activities by wt explants which activate TGF-β1 and remodel the ECM for angiogenesis and ontogenetic PCD. Whereas, lower level of TGF-β1 and persistently higher activities of MMPs and cathepsins in rd1 retinas and conditioned medium, suggested that proteinases degraded TGF-β1 and ECM and caused retinal degeneration. Lower activities of glutathione-S-transferase and glutathione-peroxidase in rd1 retina contribute to oxidative stress which damages membranes and increased the expression, release/secretion of proteinases relative to their endogenous inhibitors. Participation of oxidative stress in rd1 retinal degeneration was further confirmed from the partial protection of rd1 photoreceptors by in vitro and/or in vivo supplementation with glutathione-S-transferase or a combination of antioxidants namely lutein, zeaxanthin, α-lipoic acid and reduced-L-glutathione. Treatment with combination(s) of broad spectrum proteinase inhibitor(s) and antioxidants needs investigation.
  •  
3.
  • Zhang, Yiqin, et al. (författare)
  • Neuronal integration in an abutting-retinas culture system
  • 2003
  • Ingår i: Investigative Ophthalmology & Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 1552-5783. ; 44:11, s. 4936-4946
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Limited integration is consistently observed between subretinal transplants and host retinas. In the current study, an in vitro model system for studying connections forming between two abutting retinas was developed.METHODS: Neuroretinas were dissected from normal wild-type (WT) mice and green fluorescent protein (GFP) transgenic mice (obtained at postnatal days [P]0, P5, or P60), as well as from adult rd mice. Pieces from two different retinas (WT-WT, GFP-WT, GFP-rd) were placed side-by-side (contacting each other at the margins) or overlapping each other in organ cultures for 7 or 12 days. The abutting retinal pieces derived from animals of the same age (P5-P5; P60-P60) or of different ages (P0-P60; P5-P60). Retinal cells and fibers were visualized in wholemount preparations and in cross sections by immunocytochemistry using antibodies against neurofilament (NF+), neuronal nitric oxide synthase (NOS+), and protein kinase C (PKC+) and by GFP fluorescence (GFP+).RESULTS: In side-by-side pairs (WT-WT, GFP-WT), numerous horizontal cell fibers (NF+) and amacrine cell fibers (NOS+) crossed the interface between the two pieces, forming continuous plexiform layers. In overlapping pairs, NF+, NOS+, and PKC+ fibers displayed parallel plexiform layers, and no crossover of fibers was observed in any of the pair combinations examined (WT-WT, GFP-WT, GFP-rd). Some integration was seen only in small areas where the structure of both retinal pieces was disrupted at the interface.CONCLUSIONS: The results demonstrate the ability of neurites to extend between abutting retinas and to make appropriate target choices when they are placed side-by-side. However, this ability is limited when they overlap each other, similar to that observed in subretinal transplantation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy