SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Challa P) "

Sökning: WFRF:(Challa P)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Saar, Kadi L., et al. (författare)
  • On-chip label-free protein analysis with downstream electrodes for direct removal of electrolysis products
  • 2017
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 18:1, s. 162-170
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to apply highly controlled electric fields within microfluidic devices is valuable as a basis for preparative and analytical processes. A challenge encountered in the context of such approaches in conductive media, including aqueous buffers, is the generation of electrolysis products at the electrode/liquid interface which can lead to contamination, perturb fluid flows and generally interfere with the measurement process. Here, we address this challenge by designing a single layer microfluidic device architecture where the electric potential is applied outside and downstream of the microfluidic device while the field is propagated back to the chip via the use of a co-flowing highly conductive electrolyte solution that forms a stable interface at the separation region of the device. The co-flowing electrolyte ensures that all the generated electrolysis products, including Joule heat and gaseous products, are flowed away from the chip without coming into contact with the analytes while the single layer fabrication process where all the structures are defined lithographically allows producing the devices in a simple yet highly reproducible manner. We demonstrate that by allowing stable and effective application of electric fields in excess of 100 V cm-1, the described platform provides the basis for rapid separation of heterogeneous mixtures of proteins and protein complexes directly in their native buffers as well as for the simultaneous quantification of their charge states. We illustrate this by probing the interactions in a mixture of an amyloid forming protein, amyloid-β, and a molecular chaperone, Brichos, known to inhibit the process of amyloid formation. The availability of a platform for applying stable electric fields and its compatibility with single-layer soft-lithography processes opens up the possibility of separating and analysing a wide range of molecules on chip, including those with similar electrophoretic mobilities.
  •  
3.
  • Habchi, Johnny, et al. (författare)
  • Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 114:2, s. 200-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a readout the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.
  •  
4.
  •  
5.
  • Limbocker, Ryan, et al. (författare)
  • Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Transient oligomeric species formed during the aggregation process of the 42-residue form of the amyloid-β peptide (Aβ42) are key pathogenic agents in Alzheimer’s disease (AD). To investigate the relationship between Aβ42 aggregation and its cytotoxicity and the influence of a potential drug on both phenomena, we have studied the effects of trodusquemine. This aminosterol enhances the rate of aggregation by promoting monomer-dependent secondary nucleation, but significantly reduces the toxicity of the resulting oligomers to neuroblastoma cells by inhibiting their binding to the cellular membranes. When administered to a C. elegans model of AD, we again observe an increase in aggregate formation alongside the suppression of Aβ42-induced toxicity. In addition to oligomer displacement, the reduced toxicity could also point towards an increased rate of conversion of oligomers to less toxic fibrils. The ability of a small molecule to reduce the toxicity of oligomeric species represents a potential therapeutic strategy against AD.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy