SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cheong Rachel Y.) "

Sökning: WFRF:(Cheong Rachel Y.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baldo, Barbara, et al. (författare)
  • Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA Assay
  • 2018
  • Ingår i: eNeuro. - 2373-2822. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The neurodegenerative Huntington's disease (HD) is caused by a polyglutamine (polyQ) amplification in the huntingtin protein (HTT). Currently there is no effective therapy available for HD; however, several efforts are directed to develop and optimize HTT-lowering methods to improve HD phenotypes. To validate these approaches, there is an immediate need for reliable, sensitive, and easily accessible methods to quantify HTT expression. Using the AlphaLISA platform, we developed two novel sensitive and robust assays for quantification of HTT in biological samples using commercially available antibodies. The first, a polyQ-independent assay, measures the total pool of HTT, while the second, a polyQ-dependent assay, preferentially detects the mutant form of HTT. Using purified HTT protein standards and brain homogenates from an HD mouse model, we determine a lower limit of quantification of 1 and 3 pm and optimal reproducibility with CV values lower than 7% for intra- and 20% for interassay. In addition, we used the assays to quantify HTT in neural stem cells generated from patient-derived induced pluripotent stem cells in vitro and in human brain tissue lysates. Finally, we could detect changes in HTT levels in a mouse model where mutant HTT was conditionally deleted in neural tissue, verifying the potential to monitor the outcome of HTT-lowering strategies. This analytical platform is ideal for high-throughput screens and thus has an added value for the HD community as a tool to optimize novel therapeutic approaches aimed at modulating HTT protein levels.
  •  
2.
  • Bergh, Sofia, et al. (författare)
  • Effects of mutant huntingtin in oxytocin neurons on non-motor features of Huntington's disease
  • 2023
  • Ingår i: Neuropathology and Applied Neurobiology. - : Wiley. - 0305-1846 .- 1365-2990. ; 49:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Early non-motor features including anxiety, depression and altered social cognition are present in Huntington's disease (HD). The underlying neurobiological mechanisms are not known. Oxytocin (OXT) is involved in the regulation of emotion, social cognition and metabolism, and our previous work showed that the OXT system is affected early in HD. The aim of the study was to investigate the potential causal relationship between the selective expression of mutant huntingtin (mHTT) in OXT neurons and the development of non-motor features and neuropathology. Methods: To express mHTT only in OXT neurons, we used a novel flex-switch adeno-associated viral vector design to selectively express either mHTT or wild-type HTT in the paraventricular nucleus of the hypothalamus using OXT-Cre-recombinase mice. We also performed a mirror experiment to selectively delete mHTT in OXT neurons using the BACHD mouse model. Mice underwent a battery of behavioural tests to assess psychiatric and social behaviours 3 months post-injection or at 2 months of age, respectively. Post-mortem analyses were performed to assess the effects on the OXT system. Results: Our results show that selective expression of mHTT in OXT neurons was associated with the formation of mHTT inclusions and a 26% reduction of OXT-immunopositive neurons as well as increased anxiety-like behaviours compared with uninjected mice. However, selective deletion of mHTT from OXT neurons alone was not sufficient to alter the metabolic and psychiatric phenotype of the BACHD mice at this early time point. Conclusions: Our results indicate that mHTT expression can exert cell-autonomous toxic effects on OXT neurons without affecting the non-motor phenotype at early time points in mice.
  •  
3.
  • Bergh, Sofia, et al. (författare)
  • Oxytocin in Huntington's disease and the spectrum of amyotrophic lateral sclerosis-frontotemporal dementia
  • 2022
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 15, s. 1-10
  • Forskningsöversikt (refereegranskat)abstract
    • Neurodegenerative disorders (NDDs) such as Huntington's disease (HD) and the spectrum of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by progressive loss of selectively vulnerable populations of neurons. Although often associated with motor impairments, these NDDs share several commonalities in early symptoms and signs that extend beyond motor dysfunction. These include impairments in social cognition and psychiatric symptoms. Oxytocin (OXT) is a neuropeptide known to play a pivotal role in the regulation of social cognition as well as in emotional behaviors such as anxiety and depression. Here, we present an overview of key results implicating OXT in the pathology of HD, ALS and FTD and seek to identify commonalities across these NDDs. OXT is produced in the hypothalamus, a region in the brain that during the past decade has been shown to be affected in HD, ALS, and FTD. Several studies using human post-mortem neuropathological analyses, measurements of cerebrospinal fluid, experimental treatments with OXT as well as genetic animal models have collectively implicated an important role of central OXT in the development of altered social cognition and psychiatric features across these diseases. Understanding central OXT signaling may unveil the underlying mechanisms of early signs of the social cognitive impairment and the psychiatric features in NDDs. It is therefore possible that OXT might have potential therapeutic value for early disease intervention and better symptomatic treatment in NDDs.
  •  
4.
  • Cheong, Rachel Y., et al. (författare)
  • Effects of mutant huntingtin inactivation on Huntington disease-related behaviours in the BACHD mouse model
  • 2021
  • Ingår i: Neuropathology and Applied Neurobiology. - : Wiley. - 0305-1846 .- 1365-2990. ; 47:4, s. 564-578
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Huntington disease (HD) is a fatal neurodegenerative disorder with no disease-modifying treatments approved so far. Ongoing clinical trials are attempting to reduce huntingtin (HTT) expression in the central nervous system (CNS) using different strategies. Yet, the distribution and timing of HTT-lowering therapies required for a beneficial clinical effect is less clear. Here, we investigated whether HD-related behaviours could be prevented by inactivating mutant HTT at different disease stages and to varying degrees in an experimental model. Methods: We generated mutant BACHD mice with either a widespread or circuit-specific inactivation of mutant HTT by using Cre recombinase (Cre) under the nestin promoter or the adenosine A2A receptor promoter respectively. We also simulated a clinical gene therapy scenario with allele-specific HTT targeting by injections of recombinant adeno-associated viral (rAAV) vectors expressing Cre into the striatum of adult BACHD mice. All mice were assessed using behavioural tests to investigate motor, metabolic and psychiatric outcome measures at 4–6 months of age. Results: While motor deficits, body weight changes, anxiety and depressive-like behaviours are present in BACHD mice, early widespread CNS inactivation during development significantly improves rotarod performance, body weight changes and depressive-like behaviour. However, conditional circuit-wide mutant HTT deletion from the indirect striatal pathway during development and focal striatal-specific deletion in adulthood failed to rescue any of the HD-related behaviours. Conclusions: Our results indicate that widespread targeting and the timing of interventions aimed at reducing mutant HTT are important factors to consider when developing disease-modifying therapies for HD.
  •  
5.
  • Cheong, Rachel Y., et al. (författare)
  • Imbalance of the oxytocin-vasopressin system contributes to the neuropsychiatric phenotype in the BACHD mouse model of Huntington disease
  • 2020
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530. ; 119
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropsychiatric disturbances with altered social cognition, depression and anxiety are among the most debilitating early features in the fatal neurodegenerative disorder Huntington disease (HD) which is caused by an expanded CAG repeat in the huntingtin gene. The underlying neurobiological mechanisms are not known. Neuropathological analyses of postmortem human HD hypothalamic tissue have demonstrated loss of the neuropeptides oxytocin and vasopressin. The dynamic interplay between these neuropeptides is crucial for modulating emotional and social behavior but its role in HD is unclear. In the present study, we have investigated the effect of expressing the mutant huntingtin gene on the development of behavioral changes using the transgenic BACHD mouse model at different ages. We show for the first time that BACHD mice exhibit deficits in social behavior with parallel aberrations in the balance of the oxytocin-vasopressin system. Importantly, our data also show that restoration of the interplay within the system with an acute dose of intranasal oxytocin immediately prior to behavioral testing can rescue the depressive-like phenotype but not anxiety-like behavior in this transgenic model. These findings demonstrate that imbalances in the oxytocin-vasopressin interplay contribute to the neuropsychiatric component of HD and suggest that interventions aimed at restoring the blunted levels of oxytocin may confer therapeutic benefits for this disease.
  •  
6.
  • Cheong, Rachel Y., et al. (författare)
  • The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease
  • 2019
  • Ingår i: Journal of Huntington's disease. - 1879-6397. ; 8:4, s. 375-391
  • Forskningsöversikt (refereegranskat)abstract
    • Huntington's disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
  •  
7.
  • Gabery, Sanaz, et al. (författare)
  • Early white matter pathology in the fornix of the limbic system in Huntington disease
  • 2021
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 142:5, s. 791-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The typical motor symptoms have been associated with basal ganglia pathology. However, psychiatric and cognitive symptoms often precede the motor component and may be due to changes in the limbic system. Recent work has indicated pathology in the hypothalamus in HD but other parts of the limbic system have not been extensively studied. Emerging evidence suggests that changes in HD also include white matter pathology. Here we investigated if the main white matter tract of the limbic system, the fornix, is affected in HD. We demonstrate that the fornix is 34% smaller already in prodromal HD and 41% smaller in manifest HD compared to controls using volumetric analyses of MRI of the IMAGE-HD study. In post-mortem fornix tissue from HD cases, we confirm the smaller fornix volume in HD which is accompanied by signs of myelin breakdown and reduced levels of the transcription factor myelin regulating factor but detect no loss of oligodendrocytes. Further analyses using RNA-sequencing demonstrate downregulation of oligodendrocyte identity markers in the fornix of HD cases. Analysis of differentially expressed genes based on transcription-factor/target-gene interactions also revealed enrichment for binding sites of SUZ12 and EZH2, components of the Polycomb Repressive Complex 2, as well as RE1 Regulation Transcription Factor. Taken together, our data show that there is early white matter pathology of the fornix in the limbic system in HD likely due to a combination of reduction in oligodendrocyte genes and myelin break down.
  •  
8.
  • Gawlik, Kinga I., et al. (författare)
  • Laminin α1 reduces muscular dystrophy in dy2Jmice
  • 2018
  • Ingår i: Matrix Biology. - : Elsevier BV. - 0945-053X. ; 70, s. 36-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Muscular dystrophies, including laminin α2 chain-deficient muscular dystrophy (LAMA2-CMD), are associated with immense personal, social and economic burdens. Thus, effective treatments are urgently needed. LAMA2-CMD is either a severe, early-onset condition with complete laminin α2 chain-deficiency or a milder, late-onset form with partial laminin α2 chain-deficiency. Mouse models dy 3K /dy 3K and dy 2J /dy 2J , respectively, recapitulate these two forms of LAMA2-CMD very well. We have previously demonstrated that laminin α1 chain significantly reduces muscular dystrophy in laminin α2 chain-deficient dy 3K /dy 3K mice. Among all the different pre-clinical approaches that have been evaluated in mice, laminin α1 chain-mediated therapy has been shown to be one of the most effective lines of attack. However, it has remained unclear if laminin α1 chain-mediated treatment is also applicable for partial laminin α2 chain-deficiency. Hence, we have generated dy 2J /dy 2J mice (that express a substantial amount of an N-terminal truncated laminin α2 chain) overexpressing laminin α1 chain in the neuromuscular system. The laminin α1 chain transgene ameliorated the dystrophic phenotype, restored muscle strength and reduced peripheral neuropathy. Thus, these findings provide additional support for the development of laminin α1 chain-based therapy for LAMA2-CMD.
  •  
9.
  • Hellem, Marie N.N., et al. (författare)
  • Decreased CSF oxytocin relates to measures of social cognitive impairment in Huntington's disease patients
  • 2022
  • Ingår i: Parkinsonism and Related Disorders. - : Elsevier BV. - 1353-8020. ; 99, s. 23-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Huntington's disease (HD) is an inherited neurodegenerative disease with motor, cognitive and psychiatric symptoms. Non-motor symptoms like depression and altered social cognition are proposed to be caused by dysfunction of the hypothalamus. We measured the hypothalamic neuropeptide oxytocin in plasma and cerebrospinal fluid (CSF) in a cohort of HD gene expansion carriers (HDGECs), compared the levels to healthy HD family controls and correlated oxytocin levels to disease progression and social cognition. Methods: We recruited 113 HDGECs and 33 controls. Psychiatric and cognitive symptoms were evaluated, and social cognition was assessed with the Emotion Hexagon test, Reading the Mind in the Eyes and The Awareness of Social Inference Test. The levels of oxytocin in CSF and blood were analyzed by radioimmunoassay. Results: We found the level of oxytocin in CSF to be significantly lower by 33.5% in HDGECs compared to controls (p = 0.016). When dividing the HDGECs into groups with or without cognitive impairment, we found the oxytocin level to be significantly lower by 30.3% in the HDGECs with cognitive symptoms (p = 0.046). We found a statistically significant correlation between the level of oxytocin and scores on social cognition (Reading the Mind in the Eyes p = 0.0019; Emotion Hexagon test: p = 0.0062; The Awareness of Social Inference Test: p = 0.002). Conclusions: This is the first study to measure oxytocin in the CSF of HDGECs. We find that HDGECs have a significantly lower level of oxytocin compared to controls, and that the level of oxytocin may represent an objective and comparable measure that could be used as a state biomarker for impairment of social cognition. We suggest treatment trials to evaluate a potential effect of oxytocin on social cognition in HD.
  •  
10.
  • Marciano, Sabina, et al. (författare)
  • Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 119:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9–mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy