SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cotlarciuc I.) "

Sökning: WFRF:(Cotlarciuc I.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mishra, A., et al. (författare)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
2.
  • Franceschini, N., et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
3.
  • Valdes-Marquez, E., et al. (författare)
  • Relative effects of LDL-C on ischemic stroke and coronary disease A Mendelian randomization study
  • 2019
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:11, s. E1176-E1187
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To examine the causal relevance of lifelong differences in low-density lipoprotein cholesterol (LDL-C) for ischemic stroke (IS) relative to that for coronary heart disease (CHD) using a Mendelian randomization approach. We undertook a 2-sample Mendelian randomization, based on summary data, to estimate the causal relevance of LDL-C for risk of IS and CHD. Information from 62 independent genetic variants with genome-wide significant effects on LDL-C levels was used to estimate the causal effects of LDL-C for IS and IS subtypes (based on 12,389 IS cases from METASTROKE) and for CHD (based on 60,801 cases from CARDIoGRAMplusC4D). We then assessed the effects of LDL-C on IS and CHD for heterogeneity. A 1 mmol/L higher genetically determined LDL-C was associated with a 50% higher risk of CHD (odds ratio [OR] 1.49, 95% confidence interval [CI] 1.32-1.68, p = 1.1 x 10(-8)). By contrast, the causal effect of LDL-C was much weaker for IS (OR 1.12, 95% CI 0.96-1.30, p = 0.14; p for heterogeneity = 2.6 x 10(-3)) and, in particular, for cardioembolic stroke (OR 1.06, 95% CI 0.84-1.33, p = 0.64; p for heterogeneity = 8.6 x 10(-3)) when compared with that for CHD. In contrast with the consistent effects of LDL-C-lowering therapies on IS and CHD, genetic variants that confer lifelong LDL-C differences show a weaker effect on IS than on CHD. The relevance of etiologically distinct IS subtypes may contribute to the differences observed.
  •  
4.
  •  
5.
  • Ken-Dror, G., et al. (författare)
  • Genome-Wide Association Study Identifies First Locus Associated with Susceptibility to Cerebral Venous Thrombosis
  • 2021
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 90:5, s. 777-788
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Cerebral venous thrombosis (CVT) is an uncommon form of stroke affecting mostly young individuals. Although genetic factors are thought to play a role in this cerebrovascular condition, its genetic etiology is not well understood. Methods A genome-wide association study was performed to identify genetic variants influencing susceptibility to CVT. A 2-stage genome-wide study was undertaken in 882 Europeans diagnosed with CVT and 1,205 ethnicity-matched control subjects divided into discovery and independent replication datasets. Results In the overall case-control cohort, we identified highly significant associations with 37 single nucleotide polymorphisms (SNPs) within the 9q34.2 region. The strongest association was with rs8176645 (combined p = 9.15 x 10(-24); odds ratio [OR] = 2.01, 95% confidence interval [CI] = 1.76-2.31). The discovery set findings were validated across an independent European cohort. Genetic risk score for this 9q34.2 region increases CVT risk by a pooled estimate OR = 2.65 (95% CI = 2.21-3.20, p = 2.00 x 10(-16)). SNPs within this region were in strong linkage disequilibrium (LD) with coding regions of the ABO gene. The ABO blood group was determined using allele combination of SNPs rs8176746 and rs8176645. Blood groups A, B, or AB, were at 2.85 times (95% CI = 2.32-3.52, p = 2.00 x 10(-16)) increased risk of CVT compared with individuals with blood group O. Interpretation We present the first chromosomal region to robustly associate with a genetic susceptibility to CVT. This region more than doubles the likelihood of CVT, a risk greater than any previously identified thrombophilia genetic risk marker. That the identified variant is in strong LD with the coding region of the ABO gene with differences in blood group prevalence provides important new insights into the pathophysiology of CVT. ANN NEUROL 2021
  •  
6.
  •  
7.
  •  
8.
  • Pulit, SL, et al. (författare)
  • Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study.
  • 2016
  • Ingår i: The Lancet. Neurology. - 1474-4465. ; 15:2, s. 174-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes.To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16 851 cases with state-of-the-art phenotyping data and 32 473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20 941 cases and 364 736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10 172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis.We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50 × 10(-8); joint OR 1·19, 1·12-1·26, p=1·30 × 10(-9)). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26 × 10(-19); joint OR 1·37, 1·30-1·45, p=2·79 × 10(-32)) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93 × 10(-7); joint OR 1·17, 1·11-1·23, p=2·29 × 10(-10)) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50 × 10(-8); joint OR 1·24, 1·15-1·33, p=4·52 × 10(-9)) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82 × 10(-8); joint OR 1·17, 1·11-1·23, p=2·92 × 10(-9)). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed.Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke.US National Institute of Neurological Disorders and Stroke, National Institutes of Health.
  •  
9.
  • Chambers, John C., et al. (författare)
  • Genetic loci influencing kidney function and chronic kidney disease
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:5, s. 373-375
  • Tidskriftsartikel (refereegranskat)abstract
    • Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function (P = 10(-10) to 10(-15)). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease (P = 5.0 x 10(-5) and P = 3.6 x 10(-4), respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease.
  •  
10.
  • Traylor, Matthew, et al. (författare)
  • Genetic Variation at 16q24.2 is associated with small vessel stroke.
  • 2017
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 81:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have been successful at identifying associations with stroke and stroke subtypes, but have not yet identified any associations solely with small vessel stroke (SVS). SVS comprises a quarter of all ischaemic stroke and is a major manifestation of cerebral small vessel disease, the primary cause of vascular cognitive impairment. Studies across neurological traits have shown younger onset cases have an increased genetic burden. We leveraged this increased genetic burden by performing an age-at-onset informed GWAS meta-analysis, including a large younger onset SVS population, to identify novel associations with stroke.We used a three-stage age-at-onset informed GWAS to identify novel genetic variants associated with stroke. On identifying a novel locus associated with SVS, we assessed its influence on other small vessel disease phenotypes, as well as on mRNA expression of nearby genes, and on DNA methylation of nearby CpG sites in whole blood and in the fetal brain.We identified an association with SVS in 4,203 cases and 50,728 controls on chromosome 16q24.2 (OR(95% CI)=1.16(1.10-1.22); p=3.2x10(-9) ). The lead SNP (rs12445022) was also associated with cerebral white matter hyperintensities (OR(95% CI)=1.10(1.05-1.16); p=5.3x10(-5) ; N=3,670), but not intracerebral haemorrhage (OR(95% CI)=0.97(0.84-1.12); p=0.71; 1,545 cases, 1,481 controls). rs12445022 is associated with mRNA expression of ZCCHC14 in arterial tissues (p=9.4x10(-7) ), and DNA methylation at probe cg16596957 in whole blood (p=5.3x10(-6) ).16q24.2 is associated with SVS. Associations of the locus with expression of ZCCHC14 and DNA methylation suggest the locus acts through changes to regulatory elements. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy