SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cucinotta Francis A.) "

Search: WFRF:(Cucinotta Francis A.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hassler, Donald M., et al. (author)
  • Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Journal article (peer-reviewed)abstract
    • The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
  •  
2.
  • Rafkin, Scot C.R., et al. (author)
  • Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector
  • 2014
  • In: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 119:6, s. 1345-1358
  • Journal article (peer-reviewed)abstract
    • The Radiation Assessment Detector onboard the Mars Science Laboratory rover Curiosity is detecting the energetic particle radiation at the surface of Mars. Data collected over the first 350 Martian days of the nominal surface mission show a pronounced diurnal cycle in both the total dose rate and the neutral particle count rate. The diurnal variations detected by the Radiation Assessment Detector were neither anticipated nor previously considered in the literature. These cyclic variations in dose rate and count rate are shown to be the result of changes in atmospheric column mass driven by the atmospheric thermal tide that is characterized through pressure measurements obtained by the Rover Environmental Monitoring Station, also onboard the rover. In addition to bulk changes in the radiation environment, changes in atmospheric shielding forced by the thermal tide are shown to disproportionately affect heavy ions compared to H and He nuclei.
  •  
3.
  • Kim, Myung-Hee Y., et al. (author)
  • Comparison of Martian surface ionizing radiation measurements from MSL-RAD with Badhwar-O'Neill 2011/HZETRN model calculations
  • 2014
  • In: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 119:6, s. 1311-1321
  • Journal article (peer-reviewed)abstract
    • Dose rate measurements from Mars Science Laboratory-radiation assessment detector (MSL-RAD) for 300 sols on Mars are compared to simulation results using the Badhwar-O'Neill 2011 galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation is used. Daily atmospheric pressure is measured at Gale Crater by the MSL Rover Environmental Monitoring Station. Particles impinging on top of the Martian atmosphere reach RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD “E” detector (used for dosimetry) by the rest of the instrument. Simulation of average dose rate is in good agreement with RAD measurements for the first 200 sols and reproduces the observed variation of surface dose rate with changing heliospheric conditions and atmospheric pressure. Model results agree less well between sols 200 and 300 due to subtleties in the changing heliospheric conditions. It also suggests that the average contributions of albedo particles (charge number Z < 3) from Martian regolith comprise about 10% and 42% of the average daily point dose and dose equivalent, respectively. Neutron contributions to tissue-averaged effective doses will be reduced compared to point dose equivalent estimates because a large portion of the neutron point dose is due to low-energy neutrons with energies.
  •  
4.
  • Valtonen, Mauri, et al. (author)
  • NATURAL TRANSFER OF VIABLE MICROBES IN SPACE FROM PLANETS IN EXTRA-SOLAR SYSTEMS TO A PLANET IN OUR SOLAR SYSTEM AND VICE VERSA
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 690:1, s. 210-215
  • Journal article (peer-reviewed)abstract
    • We investigate whether it is possible that viable microbes could have been transported to the Earth from planets in extra-solar systems by means of natural vehicles such as ejecta expelled by comets or asteroid impacts on such planets. The probabilities of close encounters with other solar systems are taken into account as well as the limitations of bacterial survival times inside ejecta in space, caused by radiation and DNA decay. The conclusion is that no potentially DNA/RNA life-carrying ejecta from another solar system in the general Galactic star field landed on the Earth before life already existed on the Earth, even if the microbial survival time in space is as long as tens of millions of years. However, if the Sun formed initially as a part of a star cluster, as is commonly assumed, we cannot rule out the possibility of transfer of life from one of the sister systems to us. Likewise, there is a possibility that some extra-solar planets carry life that originated in our solar system. It will be of great interest to identify the members of the Sun's birth cluster of stars and study them for evidence of planets and life on the planets. The former step may be accomplished by the GAIA mission, the latter step by the SIM and DARWIN missions. Therefore it may not be too long until we have experimental knowledge to answer the question of whether the natural transfer of life from one solar system to another has actually taken place.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view