SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Demitz Helin Erik) "

Sökning: WFRF:(Demitz Helin Erik)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stenberg, Simon, et al. (författare)
  • Control of mitochondrial superoxide production includes programmed mtDNA deletion and restoration
  • 2020
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Deletion of mitochondrial DNA in eukaryotes is mainly attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that the regulatory circuitry underlying this editing critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. Our results may therefore be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.One-Sentence SummaryGenetically controlled editing of mitochondrial DNA is an integral part of the yeast’s defenses against oxidative damage.
  •  
2.
  • Stenberg, Simon, et al. (författare)
  • Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation
  • 2022
  • Ingår i: eLife. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
  •  
3.
  • Stenberg, Simon, et al. (författare)
  • Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation.
  • 2022
  • Ingår i: eLife. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy