SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Derroire Geraldine) "

Sökning: WFRF:(Derroire Geraldine)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Derroire, Geraldine (författare)
  • Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter-and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.
  •  
2.
  • Derroire, Geraldine (författare)
  • Isolated trees as nuclei of regeneration in tropical pastures: testing the importance of niche-based and landscape factors
  • 2016
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 27, s. 679-691
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionsOur study tests the relative importance of different attributes of isolated trees in explaining the properties of the regeneration assemblage beneath their crowns to evaluate their effect on the composition of early successional stages and understand the processes underlying this effect. We asked: (1) does the regeneration assemblage contain a high proportion of individuals conspecific with the isolated tree; (2) how does the landscape surrounding an isolated tree influence the properties of the regeneration assemblage; and (3) what is the respective importance of structural variables and functional traits of isolated trees for their influence on the properties of the regeneration assemblage?LocationThree pasture sites in Guanacaste Province, a tropical seasonally dry area, Costa Rica.MethodsNinety isolated trees were characterized by their position in the landscape relative to patches of trees, individual structural variables related to tree and crown size, and species functional traits. The assemblage of woody plants regenerating under their crowns was characterized by number of individuals and species, and taxonomic and functional composition. To understand the mechanisms underlying the facilitative effect of isolated trees on regeneration, correlations between their attributes and properties of the regeneration assemblage were assessed.ResultsWe found that a low proportion of regenerating individuals were conspecific with the isolated trees beneath which they have established. Landscape factors influenced the regeneration but their effects were site-dependent. The attributes of isolated trees correlated well with the functional composition of the regeneration assemblage: their structure and phenological habits with traits associated with drought tolerance, and their dispersal syndrome with the dispersal syndrome of the regeneration assemblage. However, isolated tree attributes correlated poorly with the regeneration assemblage's taxonomic composition.ConclusionsOur study shows that an approach based on functional composition can provide a better understanding of community assembly mechanisms than does a taxonomic approach. Two main mechanisms are suggested to explain the influence of isolated trees on the regeneration assemblage: modification of micro-scale environmental conditions (shade and moisture) and influence on dispersal agents. The effect of attributes of isolated trees on the properties of the regeneration assemblage predicts a long-term legacy of the early stages of succession.
  •  
3.
  • Derroire, Geraldine, et al. (författare)
  • Resilience of tropical dry forests – a meta-analysis of changes in species diversity and composition during secondary succession
  • 2016
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 125, s. 1386-1397
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing the recovery of species diversity and composition after major disturbance is key to understanding the resilience of tropical forests through successional processes, and its importance for biodiversity conservation. Despite the specific abiotic environment and ecological processes of tropical dry forests, secondary succession has received less attention in this biome than others and changes in species diversity and composition have never been synthesised in a systematic and quantitative review. This study aims to assess in tropical dry forests 1) the directionality of change in species richness and evenness during secondary succession, 2) the convergence of species composition towards that of old-growth forest and 3) the importance of the previous land use, precipitation regime and water availability in influencing the direction and rate of change. We conducted meta-analyses of the rate of change in species richness, evenness and composition indices with succession in 13 tropical dry forest chronosequences. Species richness increased with succession, showing a gradual accumulation of species, as did Shannon evenness index. The similarity in species composition of successional forests with old-growth forests increased with succession, yet at a low rate. Tropical dry forests therefore do show resilience of species composition but it may never reach that of old-growth forests. We found no significant differences in rates of change between different previous land uses, precipitation regimes or water availability. Our results show high resilience of tropical dry forests in term of species richness but a slow recovery of species composition. They highlight the need for further research on secondary succession in this biome and better understanding of impacts of previous land-use and landscape-scale patterns.Synthesis Secondary forests account for an increasing proportion of remaining tropical forest. Assessing their resilience is key to conservation of their biodiversity. Our study is the first meta-analysis of species changes during succession focussing on tropical dry forests, a highly threatened yet understudied biome. We show a gradual species accumulation and convergence of composition towards that of old-growth forests. While secondary tropical dry forests offer good potential for biodiversity conservation, their capacity for recovery at a sufficient rate to match threats is uncertain. Further research on this biome is needed to understand the effect of land use history and landscape processes.
  •  
4.
  • Derroire, Geraldine (författare)
  • Secondary succession in tropical dry forests : drivers and mechanisms of forest regeneration
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Secondary succession is a complex process involving numerous factors acting across scales. Understanding secondary succession in tropical dry forests is important for the conservation and restoration of this highly threatened biome. My research aims to improve knowledge of the trajectories and drivers of secondary succession in this biome, and the underlying mechanisms. I used a combination of literature synthesis, observational and experimental approaches to study plant-plant interactions and community changes during succession. Through review of published studies, I showed that established trees have a mainly positive effect on the seed dispersal, survival and germination of the subsequent generation of woody plants. However, the balance between positive and negative effects is more complex at the seedling establishment stage and can be influenced by the precipitation regime. Meta-analyses of chronosequence studies showed an increase in tree and shrub species richness with succession and a slow convergence of successional forest species composition with that of old-growth forests. Using survey of young woody plants establishing under isolated trees in pastures, I showed that the attributes of the trees influence the functional composition of the regeneration assemblages but are only weakly related to their taxonomic composition. The position of isolated trees in the landscape is also influential, but this is complex and site-specific. Through extensive sampling of leaf functional traits of sapling communities in secondary forests of different successional age, I found that community functional composition shifts from conservative towards acquisitive strategies of resource economics, through both species turnover and intraspecific variation of trait values. Five of the measured traits also showed directional changes with tree ontogeny. Lastly, an experimental test of seed fate showed that leaf litter reduced seed removal in successional forests. Seed germination rate was higher in successional forests compared with open sites and generally benefited from the presence of litter. Overall, this research suggests a higher predictability of successional trajectories when studied through functional rather than taxonomic composition. It also shows heterogeneity in successional trajectories among tropical dry forests that require further study.
  •  
5.
  • Derroire, Geraldine, et al. (författare)
  • The Effects of Established Trees on Woody Regeneration during Secondary Succession in Tropical Dry Forests
  • 2016
  • Ingår i: Biotropica. - : Wiley. - 0006-3606. ; 48, s. 290-300
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the mechanisms controlling secondary succession in tropical dry forests is important for the conservation and restoration of this highly threatened biome. Canopy-forming trees in tropical forests strongly influence later stages of succession through their effect on woody plant regeneration. In dry forests, this may be complex given the seasonal interplay of water and light limitations. We reviewed observational and experimental studies to assess (1) the relative importance of positive and negative effects of established trees on regeneration; (2) the mechanisms underlying these effects; and (3) to test the 'stress gradient hypothesis' in successional tropical dry forests. The effects of established trees on seed dispersal, seed survival, and seed germination-either through direct changes to moisture and temperature regimes or mediated by seed dispersers and predators-are mainly positive. The balance between positive and negative effects on seedling establishment is more complex and depends on the season and leaf phenology of both trees and seedlings. Seedling survival is generally enhanced by established trees mitigating dry conditions. Established trees have counteracting effects on water and light availability that influence seedling growth. The probability of a positive effect of established trees on seedling survival decreases with increased rainfall, which supports the stress gradient hypothesis. Priorities for future research are experiments to test for facilitation and competition and their underlying mechanisms, long-term studies evaluating how these effects change with ontogeny, and studies focusing on the species-specificity of interactions.
  •  
6.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
7.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (5)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lewis, Simon L. (2)
Phillips, Oliver L. (2)
Diaz, Sandra (1)
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Bond-Lamberty, Ben (1)
visa fler...
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Isaac, Marney (1)
Malhi, Yadvinder (1)
Fauset, Sophie (1)
Affum-Baffoe, Kofi (1)
Baker, Timothy R. (1)
Hubau, Wannes (1)
Zieminska, Kasia (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Chen, Shengbin (1)
Manzoni, Stefano (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Dainese, Matteo (1)
Ruiz-Peinado, Ricard ... (1)
van Bodegom, Peter M ... (1)
Wellstein, Camilla (1)
Gross, Nicolas (1)
Violle, Cyrille (1)
Björkman, Anne, 1981 (1)
Rillig, Matthias C. (1)
Hemp, Andreas (1)
Fischer, Markus (1)
Tappeiner, Ulrike (1)
MARQUES, MARCIA (1)
Jactel, Hervé (1)
Castagneyrol, Bastie ... (1)
Scherer-Lorenzen, Mi ... (1)
van der Plas, Fons (1)
Cromsigt, Joris (1)
Lawes, Michael J (1)
Jenkins, Thomas (1)
Boeckx, Pascal (1)
Estiarte, Marc (1)
Jentsch, Anke (1)
Peñuelas, Josep (1)
Reich, Peter B (1)
Senbeta, Feyera (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (6)
Göteborgs universitet (1)
Uppsala universitet (1)
Stockholms universitet (1)
Karlstads universitet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (5)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy