SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dethloff K.) "

Sökning: WFRF:(Dethloff K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shupe, M. D., et al. (författare)
  • Overview of the MOSAiC expedition : Atmosphere
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
  •  
2.
  • Wendisch, M., et al. (författare)
  • Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)(3) Project
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 104:1, s. E208-E242
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)(3) project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric-ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
  •  
3.
  • Akperov, M., et al. (författare)
  • Trends of intense cyclone activity in the Arctic from reanalyses data and regional climate models (Arctic-CORDEX)
  • 2019. - 1
  • Ingår i: Turbulence, Atmosphere and Climate Dynamics. - : IOP Publishing. - 1755-1307. ; 231
  • Konferensbidrag (refereegranskat)abstract
    • The ability of state-of-the-art regional climate models (RCMs) to simulate the trends of intense cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble in winter and summer are compared with the results from four reanalyses (ERA-Interim, NCEP-CFSR, NASA-MERRA2 and JMA-JRA55) in winter and summer for 1981-2010 period.
  •  
4.
  •  
5.
  • Rinke, A., et al. (författare)
  • Arctic RCM simulations of temperature and precipitation derived indices relevant to future frozen ground conditions
  • 2012
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 80-81, s. 136-148
  • Tidskriftsartikel (refereegranskat)abstract
    • A regional climate model with high horizontal resolution (25 km) is used to downscale 20-year-long time slices of present-day (1980–1999) and future (2046–2065, 2080–2099) Arctic climate, as simulated by the ECHAM5/MPI-OM general circulation model under the A1B emission scenario. Changes in simulated air temperature and derived indices at the end of the century indicate that significant impacts on permafrost conditions should be expected. But the magnitude of the change is regionally conditioned beyond what is obvious: Warm permafrost in the sporadic to discontinuous zone is threatened and may degrade or even complete thaw before the end of the century. A decrease in freezing and increase in thawing degree-days is interpreted as potential decrease in seasonal freeze depth and increase in active layer thickness (ALT). We show that for some regions increasing maximum summer temperature is associated with an increase of interannual temperature variability in summer, while in other regions decreased maximum summer temperatures are related to decreased variability. The occurrence of warm/cold summers and spells changes significantly in the future time slices using the present-day criteria for classification. Taken together this implies a regionally varying exposure to significant change in permafrost conditions. In addition to these aspects of the general warming trend that would promote an increase in ALT and a northward shift of the southern permafrost boundary, an analysis of the occurrence of warm summers and spells highlight some particularly vulnerable regions for permafrost degradation (e.g. West Siberian Plain, Laptev Sea coast, Canadian Archipelago), but also some less vulnerable regions (e.g. Mackenzie Mountains).
  •  
6.
  •  
7.
  • Rinke, A, et al. (författare)
  • Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:14, s. 7698-7714
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupled regional climate model HIRHAM-NAOSIM is used to investigate feedbacks between September sea ice anomalies in the Arctic and atmospheric conditions in autumn and the subsequent winter. A six-member ensemble of simulations spanning the period 1949–2008 is analyzed. The results show that negative Arctic sea ice anomalies are associated with increased heat and moisture fluxes, decreased static stability, increased lower tropospheric moisture, and modified baroclinicity, synoptic activity, and atmospheric large-scale circulation. The circulation changes in the following winter display meridionalized flow but are not fully characteristic of a negative Arctic Oscillation pattern, though they do support cold winter temperatures in northern Eurasia. Internally generated climate variability causes significant uncertainty in the simulated circulation changes due to sea ice-atmosphere interactions. The simulated atmospheric feedback patterns depend strongly on the position and strength of the regional sea ice anomalies and on the analyzed time period. The strongest atmospheric feedbacks are related to sea ice anomalies in the Beaufort Sea. This work suggests that there are complex feedback mechanisms that support a statistical link between reduced September sea ice and Arctic winter circulation. However, the feedbacks depend on regional and decadal variations in the coupled atmosphere-ocean-sea ice system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy