SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dransfield G.) "

Sökning: WFRF:(Dransfield G.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loza, M. J., et al. (författare)
  • Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study
  • 2016
  • Ingår i: Respiratory Research. - : Springer Nature. - 1465-9921 .- 1465-993X. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Methods: Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Results: Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Conclusions: Focusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies. Trial registration:NCT01274507(ADEPT), registered October 28, 2010 and NCT01982162(U-BIOPRED), registered October 30, 2013.
  •  
2.
  • Sebastian, D., et al. (författare)
  • The EBLM project - IX. Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:3, s. 3546-3563
  • Tidskriftsartikel (refereegranskat)abstract
    • Eclipsing binaries are important benchmark objects to test and calibrate stellar structure and evolution models. This is especially true for binaries with a fully convective M-dwarf component for which direct measurements of these stars' masses and radii are difficult using other techniques. Within the potential of M-dwarfs to be exoplanet host stars, the accuracy of theoretical predictions of their radius and effective temperature as a function of their mass is an active topic of discussion. Not only the parameters of transiting exoplanets but also the success of future atmospheric characterization relies on accurate theoretical predictions. We present the analysis of five eclipsing binaries with low-mass stellar companions out of a subsample of 23, for which we obtained ultra-high-precision light curves using the CHEOPS satellite. The observation of their primary and secondary eclipses are combined with spectroscopic measurements to precisely model the primary parameters and derive the M-dwarfs mass, radius, surface gravity, and effective temperature estimates using the PYCHEOPS data analysis software. Combining these results to the same set of parameters derived from TESS light curves, we find very good agreement (better than 1 percent for radius and better than 0.2 percent for surface gravity). We also analyse the importance of precise orbits from radial velocity measurements and find them to be crucial to derive M-dwarf radii in a regime below 5 percent accuracy. These results add five valuable data points to the mass-radius diagram of fully convective M-dwarfs.
  •  
3.
  • Swayne,, et al. (författare)
  • The EBLM project - VIII. First results for M-dwarf mass, radius, and effective temperature measurements using CHEOPS light curves
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:1, s. 306-322
  • Tidskriftsartikel (refereegranskat)abstract
    • The accuracy of theoretical mass, radius, and effective temperature values for M-dwarf stars is an active topic of debate. Differences between observed and theoretical values have raised the possibility that current theoretical stellar structure and evolution models are inaccurate towards the low-mass end of the main sequence. To explore this issue, we use the CHEOPS satellite to obtain high-precision light curves of eclipsing binaries with low-mass stellar companions. We use these light curves combined with the spectroscopic orbit for the solar-type companion to measure the mass, radius, and effective temperature of the M-dwarf star. Here, we present the analysis of three eclipsing binaries. We use the pycheops data analysis software to fit the observed transit and eclipse events of each system. Two of our systems were also observed by the TESS satellite - we similarly analyse these light curves for comparison. We find consistent results between CHEOPS and TESS, presenting three stellar radii and two stellar effective temperature values of low-mass stellar objects. These initial results from our on-going observing programme with CHEOPS show that we can expect to have similar to 24 new mass, radius, and effective temperature measurements for very low-mass stars within the next few years.
  •  
4.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Swayne, M.I., et al. (författare)
  • The EBLM Project– XI. Mass, radius, and effective temperature measurements for 23 M-dwarf companions to solar-type stars observed with CHEOPS
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:4, s. 5703-5722
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of low-mass stars have frequently shown a disagreement between observed stellar radii and radii predicted by theoretical stellar structure models. This ‘radius inflation’ problem could have an impact on both stellar and exoplanetary science. We present the final results of our observation programme with the CHaracterising ExOPlanet Satellite (CHEOPS) to obtain high-precision light curves of eclipsing binaries with low-mass stellar companions (EBLMs). Combined with the spectroscopic orbits of the solar-type companions, we can derive the masses, radii, and effective temperatures of 23 M-dwarf stars. We use the PYCHEOPS data analysis software to analyse their primary and secondary occultations. For all but one target, we also perform analyses with Transiting Exoplanet Survey Satellite (TESS) light curves for comparison. We have assessed the impact of starspot-induced variation on our derived parameters and account for this in our radius and effective temperature uncertainties using simulated light curves. We observe trends in inflation with both metallicity and orbital separation. We also observe a strong trend in the difference between theoretical and observational effective temperatures with metallicity. There is no such trend with orbital separation. These results are not consistent with the idea that the observed inflation in stellar radius combines with lower effective temperature to preserve the luminosity predicted by low-mass stellar models. Our EBLM systems provide high-quality and homogeneous measurements that can be used in further studies of radius inflation.
  •  
6.
  • Hawthorn, F., et al. (författare)
  • TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:3, s. 3649-3668
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∼200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M and a radius of 0.67 ± 0.01 R. We obtain photometric follow-up observations with a variety of facilities, and we use these data sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R super-Earth in a 3.82-d orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R mini-Neptune in an 8.60-d orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M, while TOI-836 c has a mass of 9.6 ± 2.6 M. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 min for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.
  •  
7.
  • Fabbri, L. M., et al. (författare)
  • COPD and multimorbidity: recognising and addressing a syndemic occurrence
  • 2023
  • Ingår i: Lancet Respiratory Medicine. - 2213-2600. ; 11:11, s. 1020-1034
  • Tidskriftsartikel (refereegranskat)abstract
    • Most patients with chronic obstructive pulmonary disease (COPD) have at least one additional, clinically relevant chronic disease. Those with the most severe airflow obstruction will die from respiratory failure, but most patients with COPD die from non-respiratory disorders, particularly cardiovascular diseases and cancer. As many chronic diseases have shared risk factors (eg, ageing, smoking, pollution, inactivity, and poverty), we argue that a shift from the current paradigm in which COPD is considered as a single disease with comorbidities, to one in which COPD is considered as part of a multimorbid state-with co-occurring diseases potentially sharing pathobiological mechanisms-is needed to advance disease prevention, diagnosis, and management. The term syndemics is used to describe the co-occurrence of diseases with shared mechanisms and risk factors, a novel concept that we propose helps to explain the clustering of certain morbidities in patients diagnosed with COPD. A syndemics approach to understanding COPD could have important clinical implications, in which the complex disease presentations in these patients are addressed through proactive diagnosis, assessment of severity, and integrated management of the COPD multimorbid state, with a patient-centred rather than a single-disease approach.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy