SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dudarev Oleg) "

Sökning: WFRF:(Dudarev Oleg)

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bischoff, Juliane, et al. (författare)
  • Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:17, s. 4899-4914
  • Tidskriftsartikel (refereegranskat)abstract
    • The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk delta C-13 measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'(soil) ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R'(soil) displays a negative linear correlation with bulk delta C-13 measurements (r(2) = -0.73, p = < 0 : 001). When compared to the GDGT-based OC proxy, the branched and isoprenoid tetraether (BIT) index, a decoupled (non-linear) behaviour on the shelf was observed, particularly in the Buor-Khaya Bay, where the R'(soil) shows limited variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'(soil) of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R'(soil) correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental conditions (e.g. temperature, pH), but other physiological controls on microbial bacteriohopanepolyol (BHP) production under psychrophilic conditions are as yet unknown.
  •  
2.
  • Bröder, Lisa, et al. (författare)
  • Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:17, s. 5003-5019
  • Tidskriftsartikel (refereegranskat)abstract
    • Ongoing global warming in high latitudes may cause an increasing supply of permafrost-derived organic carbon through both river discharge and coastal erosion to the Arctic shelves. Mobilized permafrost carbon can be either buried in sediments, transported to the deep sea or degraded to CO2 and outgassed, potentially constituting a positive feedback to climate change. This study aims to assess the fate of terrigenous organic carbon (TerrOC) in the Arctic marine environment by exploring how it changes in concentration, composition and degradation status across the wide Laptev Sea shelf. We analyzed a suite of terrestrial biomarkers as well as source-diagnostic bulk carbon isotopes (delta C-13, Delta C-14) in surface sediments from a Laptev Sea transect spanning more than 800 km from the Lena River mouth (< 10m water depth) across the shelf to the slope and rise (2000-3000m water depth). These data provide a broad view on different TerrOC pools and their behavior during cross-shelf transport. The concentrations of lignin phenols, cutin acids and high-molecular-weight (HMW) wax lipids (tracers of vascular plants) decrease by 89-99% along the transect. Molecular-based degradation proxies for TerrOC (e.g., the carbon preference index of HMW lipids, the HMW acids / alkanes ratio and the acid / aldehyde ratio of lignin phenols) display a trend to more degraded TerrOC with increasing distance from the coast. We infer that the degree of degradation of permafrost-derived TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport. Future work should therefore seek to constrain cross-shelf transport times in order to compute a TerrOC degradation rate and thereby help to quantify potential carbon-climate feedbacks.
  •  
3.
  • Bröder, Lisa, et al. (författare)
  • Historical records of organic matter supply and degradation status in the East Siberian Sea
  • 2016
  • Ingår i: Organic Geochemistry. - : Elsevier BV. - 0146-6380 .- 1873-5290. ; 91, s. 16-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Destabilization and degradation of permafrost carbon in the Arctic regions could constitute a positive feedback to climate change. A better understanding of its fate upon discharge to the Arctic shelf is therefore needed. In this study, bulk carbon isotopes as well as terrigenous and marine biomarkers were used to construct two centennial records in the East Siberian Sea. Differences in topsoil and Pleistocene Ice Complex Deposit permafrost concentrations, modeled using delta C-13 and Delta C-14, were larger between inner and outer shelf than the changes over time. Similarly, lignin-derived phenol and cutin acid concentrations differed by a factor of ten between the two stations, but did not change significantly over time, consistent with the dual-carbon isotope model. High molecular weight (HMW) n-alkane and n-alkanoic acid concentrations displayed a smaller difference between the two stations (factor of 3-6). By contrast, the fraction for marine OC drastically decreased during burial with a half-life of 19-27 years. Vegetation and degradation proxies suggested supply of highly degraded gymnosperm wood tissues. Lipid Carbon Preference Index (CPI) values indicated more extensively degraded HMW n-alkanes on the outer shelf with no change over time, whereas n-alkanoic acids appeared to be less degraded toward the core top with no large differences between the stations. Taken together, our results show larger across-shelf changes than down-core trends. Further investigation is required to establish whether the observed spatial differences are due to different sources for the two depositional settings or, alternatively, a consequence of hydrodynamic sorting combined with selective degradation during cross-shelf transport.
  •  
4.
  • Charkin, Alexander N., et al. (författare)
  • Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas : a case study in the Buor-Khaya Gulf, Laptev Sea
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11:5, s. 2305-2327
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (Ra-224, Ra-223, Ra-228, and Ra-226) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. Ra-224 and Ra-224/Ra-223 diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1.7 x 10(6) m(3) d(-1) or 19.9 m(3) s(-1), which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.
  •  
5.
  • Dudarev, Oleg, et al. (författare)
  • East Siberian Sea : Interannual heterogeneity of the suspended particulate matter and its biogeochemical signature
  • 2022
  • Ingår i: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 208
  • Forskningsöversikt (refereegranskat)abstract
    • The East Siberian Sea (ESS) is the largest, shallowest and most icebound Arctic marginal sea. It receives substantial input of terrigenous material and climate-vulnerable old organic carbon from both coastal erosion and rivers draining the extensive permafrost-covered watersheds. This study focuses on the interannual variability and spatial distribution of suspended particulate matter (SPM) in the surface and bottom waters of the ESS during the ice-free period in 2000, 2003, 2004, 2005 and 2008. We report on the composition and variability of particulate organic carbon (POC), total nitrogen (TN), POC/TN ratios, carbon and nitrogen isotopes (δ13C, δ15N) and provide estimates of the contribution of terrestrial organic carbon (terrOC) based on the δ13C isotopic values.The results show that interannual SPM distribution and elemental-isotopic characteristics of POC differ significantly between the western biogeochemical province (WBP; West of 165oE) and the eastern biogeochemical province (EBP; East of 165oE) of the ESS. The SPM mean concentration in the WBP is almost an order of magnitude higher than in the EBP. From west-to-east of the ESS, SPM tends to become more depleted in δ15N, while the δ13C becomes isotopically heavier. This trend can be explained by a shift in organic matter sources from terrigenous origin (erosion of the coastal ice complex and riverine POC) to becoming dominantly from marine plankton.The maximum contribution of terrOC to POC reached 99% in parts of the WBP, but accounts for as low as 1% in parts of the EBP. At the same time, the type of atmospheric circulation and its associated regime of both water circulation and ice transport control a displacement of the semi-stable biogeochemical border between WBP and EBP to the east or to the west if compared to its long-term average position near 165oE. Our multi-year investigation provides a robust observational basis for better understanding of the transport and fate of terrigenous material upon entering the ESS shelf waters. Our results also provide deeper insights into the interaction in the land-shelf sea system of the largest shelf sea system of the World Ocean, the East Siberian Arctic Shelf system.
  •  
6.
  • Feng, Xiaojuan, et al. (författare)
  • Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:35, s. 14168-14173
  • Tidskriftsartikel (refereegranskat)abstract
    • Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol C-14 contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.
  •  
7.
  • Feng, Xiaojuan, et al. (författare)
  • Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic : C-14 characteristics of sedimentary carbon components and their environmental controls
  • 2015
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 29:11, s. 1855-1873
  • Tidskriftsartikel (refereegranskat)abstract
    • Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular C-14 measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C-24,C-26,C-28), plant wax FAs (C(24,26,2)8), and n-alkanes (C-27,C-29,C-31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these old terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C-16,C-18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in C-14, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular C-14 analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.
  •  
8.
  • Guo, Laodong, et al. (författare)
  • Characterization of Siberian Arctic coastal sediments : implications for terrestrial organic carbon export
  • 2004
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface sediments were collected during the 2000 TransArctic Expedition along the Siberian Arctic coastline, including the Ob, Yenisey, Khatanga, Lena, and Indigirka estuaries. Sediments were characterized for elemental composition (total organic carbon, TOC, black carbon, BC, and total N, as well as major and trace elements), isotopic signature (δ13C, δ15N, Δ14C, ɛNd, 87Sr/86Sr), and organic molecular composition to better understand river export variations over the large spatial scale of the Siberian Arctic. On average, 79 ± 9% of the total C in sediments was organic while 21 ± 9% was inorganic. BC made up 9 ± 4% of the TOC pool, with a general increasing trend from west to east along the Siberian coast. The combined Nd- and Sr-isotopes (ɛNd and 87Sr/86Sr) were used to define two distinct sediment sources between east and west Siberian regions with the Khatanga River as a boundary. Data from pyrolysis-GC/MS of the sedimentary organic carbon (SOC) indicated an increase in the freshness of the organic matter from west to east on the Siberian Arctic coast, with increasing relative abundance of furfurals (polysaccharides) with respect to nitriles. Values for the δ13C of SOC ranged from -27.1‰ (mostly terrigenous) to -23.8‰, while δ15N increased from east to west (3.1 to 5.2‰) with a significant correlation with C/N ratio. Values for the Δ14C of SOC ranged from -805 to -279‰, with a consistent trend increasing from the east (Indigirka River) to the west (Ob River). These Δ14C values corresponded to a 14C age of 2570 ± 30 yBP in the Ob estuary and 13,050 ± 50 yBP in the Indigirka estuary. Most importantly, Δ14C values were significantly correlated with the ratio of BC/TOC (R2 = 0.91, n = 6), consistent with the distribution pattern of increasing permafrost zone from the west to the east along the Siberian coast. Together, our results suggest that older OC was derived from the release of recalcitrant BC during permafrost thawing and riverbank and coastal erosion, likely enhanced by ongoing environmental changes in the northern ecosystem
  •  
9.
  • Jansen, Joachim, et al. (författare)
  • The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:9, s. 2283-2292
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Ocean, especially the East Siberian Arctic Shelf (ESAS), has been proposed as a significant source of methane that might play an increasingly important role in the future. However, the underlying processes of formation, removal and transport associated with such emissions are to date strongly debated. CH4 concentration and triple isotope composition were analyzed on gas extracted from sediment and water sampled at numerous locations on the shallow ESAS from 2007 to 2013. We find high concentrations (up to 500 µM) of CH4 in the pore water of the partially thawed subsea permafrost of this region. For all sediment cores, both hydrogen and carbon isotope data reveal the predominant occurrence of CH4 that is not of thermogenic origin as it has long been thought, but resultant from microbial CH4 formation. At some locations, meltwater from buried meteoric ice and/or old organic matter preserved in the subsea permafrost were used as sub-strates. Radiocarbon data demonstrate that the CH4 present in the ESAS sediment is of Pleistocene age or older, but a small contribution of highly C-14-enriched CH4, from unknown origin, prohibits precise age determination for one sediment core and in the water column. Our sediment data suggest that at locations where bubble plumes have been observed, CH4 can escape anaerobic oxidation in the surface sediment.
  •  
10.
  • Karlsson, Emma, 1980-, et al. (författare)
  • Contrasting sources of dissolved and particulate organic matter along 62N-72N in the Siberian-Arctic Lena River
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The Lena River transports large amounts of sediment and dissolved organic matter to the shallow Laptev Sea, where it may be subject to degradation and potential release of OC. We studied organic matter collected in summer 2008, along a 1450 km section of the Lena River, from near Yakutsk at 62°N to the deltaic region at 72°N, to better understand potential in-river processing of the terrestrial particulate and dissolved fractions in the river surface water.Carbon isotopes (δ13C and Δ14C) and plant wax lipid markers combine to reveal two distinct OC pools with different behavior in the river. The molar OC/TN ratios for POC were low (6-13) which suggests contribution from (freshwater) plankton, but most of the POC was of old age (770-4500 14C years) which rather suggests a pre-aged origin - perhaps from erosion of riverbank permafrost material. Much in contrast, COC was young (20-440 14C years) and displayed a high OC/TN composition (23-56) with a steady δ13C signal along the river course (-26.7 to -27.7). There was an apparent absence of ice complex deposit permafrost (mineral soil/yedoma OC) in the COC fraction, and only small contributions to POC. The COC signal suggest contribution from contemporary plant detritus/surface soil OC. It seems as if pre-aged permafrost OC, potentially from riverbank erosion, partitions into the particulate pool and almost not at all to the DOC/COC pool.Degradation markers indicate a highly degraded COC lipid pool and a less degraded POC - the n-alkane carbon preference index (CPI, C24-C34) was 1.0-1.3 for COC and 1.2-4.9 (on average 3.3) for POC.Taken together DOC/COC and POC have clearly different terrestrial sources and different fates on its way to the shelf waters. Previously freeze-locked old permafrost OC remobilizes into the Lena River in particulate form which (at least temporarily) escapes degradation as it follows the river course seawards in a less degraded state.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (30)
annan publikation (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Gustafsson, Örjan (32)
Semiletov, Igor (22)
Dudarev, Oleg V. (15)
Semiletov, Igor P. (12)
Andersson, August (10)
Wild, Birgit (8)
visa fler...
van Dongen, Bart (5)
Vonk, Jorien E. (4)
van Dongen, Bart E. (4)
Hugelius, Gustaf (2)
Macdonald, Robie W. (2)
Wacker, Lukas (2)
Holmstrand, Henry (2)
O'Regan, Matt (2)
Sköld, Martin (2)
Alling, Vanja (2)
Ingri, Johan (2)
Jakobsson, Martin (2)
Pearce, Christof (2)
Gelting, Johan (2)
Bischoff, Juliane (2)
Sparkes, Robert B. (2)
Selver, Ayca Dogrul (2)
Talbot, Helen M. (2)
Cooper, Lee W. (1)
Guo, Laodong (1)
Kuhry, Peter (1)
Spencer, Robert G. M ... (1)
Nybom, Inna (1)
Alexanderson, Helena (1)
Andersson, Per (1)
Gustafsson, Orjan (1)
Muschitiello, France ... (1)
Brüchert, Volker (1)
Possnert, Göran, 195 ... (1)
Cronin, Thomas M. (1)
Jakobsson, Martin, 1 ... (1)
Panova, Elena (1)
Anderson, Leif G, 19 ... (1)
Humborg, Christoph (1)
Sanchez-Garcia, Laur ... (1)
Roos, Per (1)
Eckhardt, Sabine (1)
Jonsson, Sofi (1)
Liem-Nguyen, Van (1)
Wagner, Dirk (1)
Stohl, Andreas (1)
Yakushev, Evgeniy (1)
Karlsson, Emma (1)
Rivkina, Elizaveta (1)
visa färre...
Lärosäte
Stockholms universitet (33)
Göteborgs universitet (2)
Uppsala universitet (2)
Luleå tekniska universitet (2)
Lunds universitet (1)
Språk
Engelska (33)
Ryska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (34)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy