SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eickelberg O.) "

Sökning: WFRF:(Eickelberg O.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Greiffo, FR, et al. (författare)
  • CX3CR1-fractalkine axis drives kinetic changes of monocytes in fibrotic interstitial lung diseases
  • 2020
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 55:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating immune cell populations have been shown to contribute to interstitial lung disease (ILD). In this study, we analysed circulating and lung resident monocyte populations, and assessed their phenotype and recruitment from the blood to the lung in ILD. Flow cytometry analysis of blood samples for quantifying circulating monocytes was performed in 105 subjects: 83 with ILD (n=36, n=28 and n=19 for nonspecific interstitial pneumonia, hypersensitivity pneumonitis and connective-tissue disease-associated ILD, respectively), as well as 22 controls. Monocyte localisation and abundance were assessed using immunofluorescence and flow cytometry of lung tissue. Monocyte populations were cultured either alone or with endothelial cells to assess fractalkine-dependent transmigration pattern. We show that circulating classical monocytes (CM) were increased in ILD compared with controls, while nonclassical monocytes (NCM) were decreased. CM abundance correlated inversely with lung function, while NCM abundance correlated positively. Both CCL2 and CX3CL1 concentrations were increased in plasma and lungs of ILD patients. Fractalkine co-localised with ciliated bronchial epithelial cells, thereby creating a chemoattractant gradient towards the lung. Fractalkine enhanced endothelial transmigration of NCM in ILD samples only. Immunofluorescence, as well as flow cytometry, showed an increased presence of NCM in fibrotic niches in ILD lungs. Moreover, NCM in the ILD lungs expressed increased CX3CR1, M2-like and phagocytic markers. Taken together, our data support that in ILD, fractalkine drives the migration of CX3CR1+ NCM to the lungs, thereby perpetuating the local fibrotic process.
  •  
2.
  • Sungnak, W., et al. (författare)
  • SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes
  • 2020
  • Ingår i: Nature Medicine. - : Nature Research. - 1078-8956 .- 1546-170X. ; 26:5, s. 681-687
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated SARS-CoV-2 potential tropism by surveying expression of viral entry-associated genes in single-cell RNA-sequencing data from multiple tissues from healthy human donors. We co-detected these transcripts in specific respiratory, corneal and intestinal epithelial cells, potentially explaining the high efficiency of SARS-CoV-2 transmission. These genes are co-expressed in nasal epithelial cells with genes involved in innate immunity, highlighting the cells’ potential role in initial viral infection, spread and clearance. The study offers a useful resource for further lines of inquiry with valuable clinical samples from COVID-19 patients and we provide our data in a comprehensive, open and user-friendly fashion at www.covid19cellatlas.org. 
  •  
3.
  • Yaroshenko, A., et al. (författare)
  • Preclinical x-ray dark-field radiography for pulmonary emphysema evaluation
  • 2013
  • Ingår i: ISBI 2013 - 2013 IEEE 10th International Symposium on Biomedical Imaging : From Nano to Macro - From Nano to Macro. - 1945-7928 .- 1945-8452. - 9781467364553 - 9781467364560 ; , s. 370-373
  • Konferensbidrag (refereegranskat)abstract
    • Pulmonary emphysema is a widespread disorder characterized by irreversible destruction of alveolar walls. The spatial distribution of the disease, so far, could only be obtained using an x-ray CT scan, implying a high patient dose. X-ray scattering on alveolar structures is measured in the dark-field signal. The signal is dependent on the size of alveoli and therefore, a combination of absorption and dark-field signal is explored for mapping the distribution of emphysema in the lung on x-ray projection images. In this study three excised murine lungs with pulmonary emphysema and three control samples were imaged using a compact, cone-beam, small-animal x-ray dark-field scanner with a polychromatic source. Statistical analysis of the results, based on a combination of transmission and dark-field signals, revealed a distinct difference between emphysematous and control samples. Subsequently, the distribution of emphysema was mapped out per-pixel for the lungs and showed good agreement with histological findings.
  •  
4.
  •  
5.
  • Velroyen, A, et al. (författare)
  • Grating-based X-ray Dark-field Computed Tomography of Living Mice.
  • 2015
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 2:10, s. 1500-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy