SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ekman Annica) "

Sökning: WFRF:(Ekman Annica)

  • Resultat 1-10 av 133
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acosta Navarro, Juan Camilo, et al. (författare)
  • Amplification of Arctic warming by past air pollution reductions in Europe
  • 2016
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 9:4, s. 277-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic region is warming considerably faster than the rest of the globe(1), with important consequences for the ecosystems(2) and human exploration of the region(3). However, the reasons behind this Arctic amplification are not entirely clear(4). As a result of measures to enhance air quality, anthropogenic emissions of particulate matter and its precursors have drastically decreased in parts of the Northern Hemisphere over the past three decades(5). Here we present simulations with an Earth system model with comprehensive aerosol physics and chemistry that show that the sulfate aerosol reductions in Europe since 1980 can potentially explain a significant fraction of Arctic warming over that period. Specifically, the Arctic region receives an additional 0.3Wm(-2) of energy, and warms by 0.5 degrees C on annual average in simulations with declining European sulfur emissions in line with historical observations, compared with a model simulation with fixed European emissions at 1980 levels. Arctic warming is amplified mainly in fall and winter, but the warming is initiated in summer by an increase in incoming solar radiation as well as an enhanced poleward oceanic and atmospheric heat transport. The simulated summertime energy surplus reduces sea-ice cover, which leads to a transfer of heat from the Arctic Ocean to the atmosphere. We conclude that air quality regulations in the Northern Hemisphere, the ocean and atmospheric circulation, and Arctic climate are inherently linked.
  •  
2.
  • Acosta Navarro, Juan Camilo, 1983- (författare)
  • Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Particulate matter suspended in air (i.e. aerosol particles) exerts a substantial influence on the climate of our planet and is responsible for causing severe public health problems in many regions across the globe. Human activities have altered the natural and anthropogenic emissions of aerosol particles through direct emissions or indirectly by modifying natural sources. The climate effects of the latter have been largely overlooked. Humans have dramatically altered the land surface of the planet causing changes in natural aerosol emissions from vegetated areas. Regulation on anthropogenic and natural aerosol emissions have the potential to affect the climate on regional to global scales. Furthermore, the regional climate effects of aerosol particles could potentially be very different than the ones caused by other climate forcers (e.g. well mixed greenhouse gases). The main objective of this work was to investigate the climatic effects of land use and air pollution via aerosol changes.Using numerical model simulations it was found that land use changes in the past millennium have likely caused a positive radiative forcing via aerosol climate interactions. The forcing is an order of magnitude smaller and has an opposite sign than the radiative forcing caused by direct aerosol emissions changes from other human activities. The results also indicate that future reductions of fossil fuel aerosols via air quality regulations may lead to an additional warming of the planet by mid-21st century and could also cause an important Arctic amplification of the warming. In addition, the mean position of the intertropical convergence zone and the Asian monsoon appear to be sensitive to aerosol emission reductions from air quality regulations. For these reasons, climate mitigation policies should take into consideration aerosol air pollution, which has not received sufficient attention in the past.
  •  
3.
  • Acosta Navarro, Juan C., et al. (författare)
  • Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations
  • 2017
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:3, s. 939-954
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments with a climate model (NorESM1) were performed to isolate the effects of aerosol particles and greenhouse gases on surface temperature and precipitation in simulations of future climate. The simulations show that by 2025-2049, a reduction of aerosol emissions from fossil fuels following a maximum technically feasible reduction (MFR) scenario could lead to a global and Arctic warming of 0.26 K and 0.84 K, respectively; as compared with a simulation with fixed aerosol emissions at the level of 2005. If fossil fuel emissions of aerosols follow a current legislation emissions (CLE) scenario, the NorESM1 model simulations yield a non-significant change in global and Arctic average surface temperature as compared with aerosol emissions fixed at year 2005. The corresponding greenhouse gas effect following the RCP4.5 emission scenario leads to a global and Arctic warming of 0.35 K and 0.94 K, respectively.The model yields a marked annual average northward shift in the inter-tropical convergence zone with decreasing aerosol emissions and subsequent warming of the northern hemisphere. The shift is most pronounced in the MFR scenario but also visible in the CLE scenario. The modeled temperature response to a change in greenhouse gas concentrations is relatively symmetric between the hemispheres and there is no marked shift in the annual average position of the inter-tropical convergence zone. The strong reduction in aerosol emissions in MFR also leads to a net southward cross-hemispheric energy transport anomaly both in the atmosphere and ocean, and enhanced monsoon circulation in Southeast and East Asia causing an increase in precipitation over a large part of this region.
  •  
4.
  • Acosta Navarro, Juan Camilo, et al. (författare)
  • Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium
  • 2014
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : Wiley-Blackwell. - 2169-897X .- 2169-8996. ; 119:11, s. 6867-6885
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the millennial variability (1000 A.D.-2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during 1750-1850 and 1000-1200, respectively), and LPJ-GUESS emissions were 323 TgC yr-1(15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1(10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1(10% and 4% higher than during 1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.
  •  
5.
  • Acosta Navarro, Juan Camilo (författare)
  • Historical anthropogenic radiative forcing of changes in biogenic secondary organic aerosol
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA.The specific objectives of this licentiate thesis are: 1) to understand what drove the changes in aerosol-forming BVOC emissions (i.e. isoprene, monoterpenes and sesquiterpenes) and to quantify these changes; 2) to calculate for the first time the combined historical aerosol direct and aerosol-cloud albedo effects on radiation from changing BVOC emissions through SOA formation; 3) to investigate how important the biological climate feedback associated to BVOC emissions and SOA formation is from a global climate perspective.We find that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m². The suggested biological climate feedback seems to be too small to have observable consequences on the global climate in the recent past.
  •  
6.
  • Andersson, Camilla, et al. (författare)
  • Achievements and experiences from science–policy interaction in the field of air pollution : Synthesising 20 years of research and outreach,thinking about future needs
  • 2021
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • For 20 years, the Swedish Environmental Protection Agency together with the MISTRA research foundation have funded five air pollution research programmes with focus on producing knowledge that supports policy and emission control in national and international arenas. The research has been multidisciplinary and has included research on emissions, atmospheric transport and transformation processes, human health effects, ecosystem effects, and emission control strategies. Research has also been conducted on the interaction between air pollution and climate change.Over these years, the link between the research programmes and the development of emission control strategies and policies in Sweden, the EU, and the UNECE Air Convention has been of high importance. This report presents how the research programmes have created societal benefits through support for the development of air pollution policies and emission control measures. The report also identifies future research needs to ensure continued progress towards even better air quality for future generations.
  •  
7.
  • Bardakov, Roman, et al. (författare)
  • A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds
  • 2020
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep convective clouds reach the upper troposphere (8-15 km height). In addition to moisture and aerosol particles, they can bring aerosol precursor gases and other reactive trace gases from the planetary boundary layer to the cloud top. In this paper, we present a method to estimate trace gas transport based on the analysis of individual air parcel trajectories. Large eddy simulation of an idealized deep convective cloud was used to provide realistic environmental input to a parcel model. For a buoyant parcel, we found that the trace gas transport approximately follows one out of three scenarios, determined by a combination of the equilibrium vapor pressure (containing information about water-solubility and pure component saturation vapor pressure) and the enthalpy of vaporization. In one extreme, the trace gas will eventually be completely removed by precipitation. In the other extreme, there is almost no vapor condensation on hydrometeors and most of the gas is transported to the top of the cloud. The scenario in between these two extremes is also characterized by strong gas condensation, but a small fraction of the trace gas may still be transported aloft. This approach confirms previously suggested patterns of inert trace gas behavior in deep convective clouds, agrees with observational data, and allows estimating transport in analytically simple and computationally efficient way compared to explicit cloud-resolving model calculations.
  •  
8.
  • Bardakov, Roman, 1992-, et al. (författare)
  • The Role of Convective Up- and Downdrafts in the Transport of Trace Gases in the Amazon
  • 2022
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 127:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep convective clouds can redistribute gaseous species and particulate matter among different layers of the troposphere with important implications for atmospheric chemistry and climate. The large number of atmospheric trace gases of different volatility makes it challenging to predict their partitioning between hydrometeors and gas phase inside highly dynamic deep convective clouds. In this study, we use an ensemble of 51,200 trajectories simulated with a cloud-resolving model to characterize up- and downdrafts within Amazonian deep convective clouds. We also estimate the transport of a set of hypothetical non-reactive gases of different volatility, within the up- and downdrafts. We find that convective air parcels originating from the boundary layer (i.e., originating at 0.5 km altitude), can transport up to 25% of an intermediate volatility gas species (e.g., methyl hydrogen peroxide) and up to 60% of high volatility gas species (e.g., n-butane) to the cloud outflow above 10 km through the mean convective updraft. At the same time, the same type of gases can be transported to the boundary layer from the middle troposphere (i.e., originating at 5 km) within the mean convective downdraft with an efficiency close to 100%. Low volatility gases (e.g., nitric acid) are not efficiently transported, neither by the updrafts nor downdrafts, if the gas is assumed to be fully retained in a droplet upon freezing. The derived properties of the mean up- and downdraft can be used in future studies for investigating convective transport of a larger set of reactive trace gases.
  •  
9.
  • Bardakov, Roman, 1992- (författare)
  • Transport and chemical processing of trace gases in deep convective clouds
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Deep convective clouds can efficiently transport trace gases from the planetary boundary layer to the upper troposphere. Once there, some gases will contribute to new particle formation and growth, eventually producing aerosols that are large enough to influence cloud properties, the radiative budget of the Earth, and climate. The magnitude and exact pathways of the convective transport of many organic and inorganic compounds are, however, still unclear. This dissertation presents a framework to study vertical transport of gas mixtures by deep convective clouds. The method consists of a chemical box model that is driven by cloud air parcel trajectory data generated by large-eddy simulation. This combination allows us to examine detailed gas-cloud interactions as well as complex systems of gas-phase chemical reactions. A large ensemble of simulated cloud trajectories was used to identify and characterize convective up- and downdrafts in the Amazon region. The analysis showed that air parcels starting close to the surface (at 0.5 km) experienced a substantially larger probability of reaching the upper troposphere (above 10 km) than parcels starting at the top of the boundary layer. Furthermore, the framework was used to estimate the vertical transport of isoprene, isoprene oxidation products, ammonia, and several non-reactive trace gases. We found that a typical Amazonian deep convective cloud can transport around 30% of the boundary layer isoprene to the cloud outflow if the efficiency of the gas uptake on ice is high and there is no lightning within the cloud. If the efficiency of gas uptake on ice is low and lightning within the cloud is extensive, all isoprene will be oxidized. Several low-volatility isoprene oxidation products will then have relatively high concentrations in the outflow, which potentially could lead to new particle formation and growth. Another result was that up to 10% of the boundary layer ammonia can reach the cloud outflow, where it in some environments can nucleate synergistically with nitric and sulfuric acid. A key uncertainty in our estimates is the efficiency of gas uptake by ice particles.
  •  
10.
  • Bardakov, Roman, et al. (författare)
  • Transport and chemistry of isoprene and its oxidation products in deep convective clouds
  • 2021
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 73:1, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep convective clouds can transport trace gases from the planetary boundary layer into the upper troposphere where subsequent chemistry may impact aerosol particle formation and growth. In this modelling study, we investigate processes that affect isoprene and its oxidation products injected into the upper troposphere by an isolated deep convective cloud in the Amazon. We run a photochemical box model with coupled cloud microphysics along hundreds of individual air parcel trajectories sampled from a cloud-resolving model simulation of a convective event. The box model simulates gas-phase chemical reactions, gas scavenging by liquid and ice hydrometeors, and turbulent dilution inside a deep convective cloud. The results illustrate the potential importance of gas uptake to anvil ice in regulating the intensity of the isoprene oxidation and associated low volatility organic vapour concentrations in the outflow. Isoprene transport and fate also depends on the abundance of lightning-generated nitrogen oxide radicals (NOx = NO + NO2). If gas uptake on ice is efficient and lightning activity is low, around 30% of the boundary layer isoprene will survive to the cloud outflow after approximately one hour of transport, while all the low volatile oxidation products will be scavenged by the cloud hydrometeors. If lightning NOx is abundant and gas uptake by ice is inefficient, then all isoprene will be oxidised during transport or in the immediate outflow region, while several low volatility isoprene oxidation products will have elevated concentrations in the cloud outflow. Reducing uncertainties associated with the uptake of vapours on ice hydrometeors, especially HO2 and oxygenated organics, is essential to improve predictions of isoprene and its oxidation products in deep convective outflows and their potential contribution to new particle formation and growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 133
Typ av publikation
tidskriftsartikel (95)
annan publikation (16)
doktorsavhandling (15)
licentiatavhandling (3)
rapport (1)
konferensbidrag (1)
visa fler...
forskningsöversikt (1)
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (97)
övrigt vetenskapligt/konstnärligt (36)
Författare/redaktör
Ekman, Annica M. L. (84)
Riipinen, Ilona (21)
Ekman, Annica (21)
Krejci, Radovan (18)
Savre, Julien (15)
Tjernström, Michael (13)
visa fler...
Ström, Johan (10)
Struthers, Hamish (9)
Devasthale, Abhay (9)
Ekman, Annica M. L., ... (9)
Bender, Frida A.-M. (8)
Leck, Caroline (8)
Hansson, Hans-Christ ... (7)
Ekman, Annica M.L. P ... (7)
Zieger, Paul (6)
Seland, O. (5)
Kirkevag, A. (5)
Iversen, T. (5)
Lewinschal, Anna (5)
Tunved, Peter (5)
Caballero, Rodrigo (5)
Engström, Anders (5)
Bulatovic, Ines (5)
Johansson, Erik (4)
Wagner, Robert (4)
Sotiropoulou, Georgi ... (4)
Acosta Navarro, Juan ... (4)
Nilsson, Douglas (4)
Mårtensson, Monica (4)
Svensson, Gunilla (4)
Schmale, Julia (4)
Bardakov, Roman (4)
Baró Pérez, Alejandr ... (4)
Bender, Frida (4)
Pausata, Francesco S ... (3)
Kulmala, Markku (3)
Mohr, Claudia (3)
Diamond, Michael S. (3)
Salter, Matthew (3)
Nenes, Athanasios (3)
Bardakov, Roman, 199 ... (3)
Schwarz, Matthias (3)
Tonttila, Juha (3)
Lee, Hyunho (3)
Ekman, Annica, Dr. (3)
Bourgeois, Quentin (3)
Nilsson, E. Douglas (3)
Dada, Lubna (3)
Hoose, Corinna (3)
Sedlar, Joseph (3)
visa färre...
Lärosäte
Stockholms universitet (128)
Uppsala universitet (5)
Lunds universitet (5)
Chalmers tekniska högskola (4)
Göteborgs universitet (3)
Kungliga Tekniska Högskolan (3)
visa fler...
Linköpings universitet (3)
Högskolan i Borås (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (132)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (123)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy