SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elhaik Eran) "

Sökning: WFRF:(Elhaik Eran)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Sai, et al. (författare)
  • Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis
  • 2022
  • Ingår i: Neuron. - : Elsevier BV. - 0896-6273. ; 110:6, s. 11-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.
  •  
2.
  •  
3.
  • Aguiar-Pulido, Vanessa, et al. (författare)
  • Systems biology analysis of human genomes points to key pathways conferring spina bifida risk
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 118:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.
  •  
4.
  • Baughn, Linda B., et al. (författare)
  • Targeting TMPRSS2 in SARS-CoV-2 Infection
  • 2020
  • Ingår i: Mayo Clinic Proceedings. - : Elsevier BV. - 0025-6196. ; 95:9, s. 1989-1999
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has rapidly caused a global pandemic associated with a novel respiratory infection: coronavirus disease-19 (COVID-19). Angiotensin-converting enzyme-2 (ACE2) is necessary to facilitate SARS-CoV-2 infection, but—owing to its essential metabolic roles—it may be difficult to target it in therapies. Transmembrane protease serine 2 (TMPRSS2), which interacts with ACE2, may be a better candidate for targeted therapies. Using publicly available expression data, we show that both ACE2 and TMPRSS2 are expressed in many host tissues, including lung. The highest expression of ACE2 is found in the testes, whereas the prostate displays the highest expression of TMPRSS2. Given the increased severity of disease among older men with SARS-CoV-2 infection, we address the potential roles of ACE2 and TMPRSS2 in their contribution to the sex differences in severity of disease. We show that expression levels of ACE2 and TMPRSS2 are overall comparable between men and women in multiple tissues, suggesting that differences in the expression levels of TMPRSS2 and ACE2 in the lung and other non–sex-specific tissues may not explain the gender disparities in severity of SARS CoV-2. However, given their instrumental roles for SARS-CoV-2 infection and their pleiotropic expression, targeting the activity and expression levels of TMPRSS2 is a rational approach to treat COVID-19.
  •  
5.
  •  
6.
  • Behnamian, Sara, et al. (författare)
  • Temporal population structure, a genetic dating method for ancient Eurasian genomes from the past 10,000 years
  • 2022
  • Ingår i: Cell reports methods. - : Elsevier BV. - 2667-2375. ; 2:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiocarbon dating is the gold standard in archeology to estimate the age of skeletons, a key to studying their origins. Many published ancient genomes lack reliable and direct dates, which results in obscure and contradictory reports. We developed the temporal population structure (TPS), a DNA-based dating method for genomes ranging from the Late Mesolithic to today, and applied it to 3,591 ancient and 1,307 modern Eurasians. TPS predictions aligned with the known dates and correctly accounted for kin relationships. TPS dating of poorly dated Eurasian samples resolved conflicting reports in the literature, as illustrated by one test case. We also demonstrated how TPS improved the ability to study phenotypic traits over time. TPS can be used when radiocarbon dating is unfeasible or uncertain or to develop alternative hypotheses for samples younger than 10,000 years ago, a limitation that may be resolved over time as ancient data accumulate.
  •  
7.
  • Carress, Hannah, et al. (författare)
  • Population genetic considerations for using biobanks as international resources in the pandemic era and beyond
  • 2021
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 22
  • Forskningsöversikt (refereegranskat)abstract
    • The past years have seen the rise of genomic biobanks and mega-scale meta-analysis of genomic data, which promises to reveal the genetic underpinnings of health and disease. However, the over-representation of Europeans in genomic studies not only limits the global understanding of disease risk but also inhibits viable research into the genomic differences between carriers and patients. Whilst the community has agreed that more diverse samples are required, it is not enough to blindly increase diversity; the diversity must be quantified, compared and annotated to lead to insight. Genetic annotations from separate biobanks need to be comparable and computable and to operate without access to raw data due to privacy concerns. Comparability is key both for regular research and to allow international comparison in response to pandemics. Here, we evaluate the appropriateness of the most common genomic tools used to depict population structure in a standardized and comparable manner. The end goal is to reduce the effects of confounding and learn from genuine variation in genetic effects on phenotypes across populations, which will improve the value of biobanks (locally and internationally), increase the accuracy of association analyses and inform developmental efforts.
  •  
8.
  • Chernomoretz, Ariel, et al. (författare)
  • The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report
  • 2016
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium is a novel, interdisciplinary initiative comprised of experts across many fields, including genomics, data analysis, engineering, public health, and architecture. The ultimate goal of the MetaSUB Consortium is to improve city utilization and planning through the detection, measurement, and design of metagenomics within urban environments. Although continual measures occur for temperature, air pressure, weather, and human activity, including longitudinal, cross-kingdom ecosystem dynamics can alter and improve the design of cities. The MetaSUB Consortium is aiding these efforts by developing and testing metagenomic methods and standards, including optimized methods for sample collection, DNA/RNA isolation, taxa characterization, and data visualization. The data produced by the consortium can aid city planners, public health officials, and architectural designers. In addition, the study will continue to lead to the discovery of new species, global maps of antimicrobial resistance (AMR) markers, and novel biosynthetic gene clusters (BGCs). Finally, we note that engineered metagenomic ecosystems can help enable more responsive, safer, and quantified cities.
  •  
9.
  • Chng, Kern Rei, et al. (författare)
  • Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26, s. 941-951
  • Tidskriftsartikel (refereegranskat)abstract
    • Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections. Spatiotemporal characterization of microbial diversity and antibiotic resistance in a tertiary-care hospital reveals broad distribution and persistence of antibiotic-resistant organisms that could cause opportunistic infections in a healthcare setting.
  •  
10.
  • Cooper-Knock, Johnathan, et al. (författare)
  • Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene
  • 2020
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 33:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cooper-Knock et al. identify amyotrophic lateral sclerosis (ALS) risk variants within non-coding regulatory DNA linked to a known ALS gene, TBK1, but also CAV1 and CAV2. Disease-associated variants reduce CAV1/CAV2 expression and disrupt membrane lipid rafts with consequences for neurotrophic signaling. CAV1 coding sequence also contains ALS-associated mutations. © 2020 The Author(s) Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. CAV1 and CAV2 organize membrane lipid rafts (MLRs) important for cell signaling and neuronal survival, and overexpression of CAV1 ameliorates ALS phenotypes in vivo. Genome-wide association studies localize a large proportion of ALS risk variants within the non-coding genome, but further characterization has been limited by lack of appropriate tools. By designing and applying a pipeline to identify pathogenic genetic variation within enhancer elements responsible for regulating gene expression, we identify disease-associated variation within CAV1/CAV2 enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce CAV1/CAV2 expression in neurons. Additional enrichment of ALS-associated mutations within CAV1 exons positions CAV1 as an ALS risk gene. We propose CAV1/CAV2 overexpression as a personalized medicine target for ALS. © 2020 The Author(s)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (23)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Elhaik, Eran (26)
Mason, Christopher E ... (9)
Dias-Neto, Emmanuel (5)
Łabaj, Paweł P. (5)
Suzuki, Haruo (5)
Bezdan, Daniela (5)
visa fler...
Graur, Dan (5)
Deng, Youping (4)
Desnues, Christelle (4)
Iraola, Gregorio (4)
Jang, Soojin (4)
Bhattacharyya, Malay (4)
Udekwu, Klas (4)
Elsik, Christine G. (4)
Gibbs, Richard A (4)
Oliveira, Manuela (4)
Maglott, Donna (4)
Ermolaeva, Olga (4)
Bhattacharya, Chandr ... (3)
Castro-Nallar, Eduar ... (3)
Nagarajan, Niranjan (3)
Siam, Rania (3)
Shi, Tieliu (3)
Danko, David (3)
Baughn, Linda B. (3)
Sodergren, Erica (3)
Weinstock, George M. (3)
Zhang, Lan (3)
Kahles, André (3)
Ossowski, Stephan (3)
Graf, Alexandra B. (3)
Noushmehr, Houtan (3)
Moraes, Milton Ozori ... (3)
Shi, Leming (3)
Richard, Hugues (3)
Semmler, Torsten (3)
Dybwad, Marius (3)
Chatziefthimiou, Asp ... (3)
Schriml, Lynn M. (3)
Hernandez, Mark (3)
Ahsanuddin, Sofia (3)
Butler, Daniel J. (3)
Frolova, Alina (3)
Tighe, Scott W. (3)
Hlavina, Wratko (3)
Kapustin, Yuri (3)
Pruitt, Kim (3)
Lewis, Lora R (3)
Davis, Clay (3)
Dugan-Rocha, Shannon (3)
visa färre...
Lärosäte
Lunds universitet (20)
Uppsala universitet (3)
Stockholms universitet (3)
Umeå universitet (2)
Karolinska Institutet (2)
Göteborgs universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Medicin och hälsovetenskap (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy